BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

146 related articles for article (PubMed ID: 25870411)

  • 21. Prediction of the recognition sites on 16S and 23S rRNAs from E. coli for the formation of 16S-23S rRNA complex.
    Thanaraj TA; Kolaskar AS; Pandit MW
    J Biomol Struct Dyn; 1988 Dec; 6(3):587-92. PubMed ID: 3078239
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Elongation arrest by SecM via a cascade of ribosomal RNA rearrangements.
    Mitra K; Schaffitzel C; Fabiola F; Chapman MS; Ban N; Frank J
    Mol Cell; 2006 May; 22(4):533-43. PubMed ID: 16713583
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Periodic conformational changes in rRNA: monitoring the dynamics of translating ribosomes.
    Polacek N; Patzke S; Nierhaus KH; Barta A
    Mol Cell; 2000 Jul; 6(1):159-71. PubMed ID: 10949037
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A story: unpaired adenosine bases in ribosomal RNAs.
    Gutell RR; Cannone JJ; Shang Z; Du Y; Serra MJ
    J Mol Biol; 2000 Dec; 304(3):335-54. PubMed ID: 11090278
    [TBL] [Abstract][Full Text] [Related]  

  • 25. A comparison of the crystal structures of eukaryotic and bacterial SSU ribosomal RNAs reveals common structural features in the hypervariable regions.
    Lee JC; Gutell RR
    PLoS One; 2012; 7(5):e38203. PubMed ID: 22693601
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Nucleotides in 23S rRNA protected by the association of 30S and 50S ribosomal subunits.
    Merryman C; Moazed D; Daubresse G; Noller HF
    J Mol Biol; 1999 Jan; 285(1):107-13. PubMed ID: 9878392
    [TBL] [Abstract][Full Text] [Related]  

  • 27. G.U base pairing motifs in ribosomal RNA.
    Gautheret D; Konings D; Gutell RR
    RNA; 1995 Oct; 1(8):807-14. PubMed ID: 7493326
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Base-pairing of 23 S rRNA ends is essential for ribosomal large subunit assembly.
    Liiv A; Remme J
    J Mol Biol; 1998 Feb; 276(3):537-45. PubMed ID: 9551095
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Crystal structure of the S15-rRNA complex.
    Nikulin A; Serganov A; Ennifar E; Tishchenko S; Nevskaya N; Shepard W; Portier C; Garber M; Ehresmann B; Ehresmann C; Nikonov S; Dumas P
    Nat Struct Biol; 2000 Apr; 7(4):273-7. PubMed ID: 10742169
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Mutational and structural analysis of the RNA binding site for Escherichia coli ribosomal protein S7.
    Dragon F; Payant C; Brakier-Gingras L
    J Mol Biol; 1994 Nov; 244(1):74-85. PubMed ID: 7525976
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Crystal structure of the 30 S ribosomal subunit from Thermus thermophilus: structure of the proteins and their interactions with 16 S RNA.
    Brodersen DE; Clemons WM; Carter AP; Wimberly BT; Ramakrishnan V
    J Mol Biol; 2002 Feb; 316(3):725-68. PubMed ID: 11866529
    [TBL] [Abstract][Full Text] [Related]  

  • 32. AA.AG@helix.ends: A:A and A:G base-pairs at the ends of 16 S and 23 S rRNA helices.
    Elgavish T; Cannone JJ; Lee JC; Harvey SC; Gutell RR
    J Mol Biol; 2001 Jul; 310(4):735-53. PubMed ID: 11453684
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Origin of 16S and 23S rRNAs and the E. coli str operon, as derived from tandem tRNA repeats.
    Ohnishi K
    Nucleic Acids Symp Ser; 1993; (29):163-4. PubMed ID: 7504242
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Functional genetic selection of Helix 66 in Escherichia coli 23S rRNA identified the eukaryotic-binding sequence for ribosomal protein L2.
    Kitahara K; Kajiura A; Sato NS; Suzuki T
    Nucleic Acids Res; 2007; 35(12):4018-29. PubMed ID: 17553838
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Ribosomal intersubunit bridge B2a is involved in factor-dependent translation initiation and translational processivity.
    Kipper K; Hetényi C; Sild S; Remme J; Liiv A
    J Mol Biol; 2009 Jan; 385(2):405-22. PubMed ID: 19007789
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Additional Watson-Crick interactions suggest a structural core in large subunit ribosomal RNA.
    Haselman T; Gutell RR; Jurka J; Fox GE
    J Biomol Struct Dyn; 1989 Aug; 7(1):181-6. PubMed ID: 2684221
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Structure of the L1 protuberance in the ribosome.
    Nikulin A; Eliseikina I; Tishchenko S; Nevskaya N; Davydova N; Platonova O; Piendl W; Selmer M; Liljas A; Drygin D; Zimmermann R; Garber M; Nikonov S
    Nat Struct Biol; 2003 Feb; 10(2):104-8. PubMed ID: 12514741
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Selecting rRNA binding sites for the ribosomal proteins L4 and L6 from randomly fragmented rRNA: application of a method called SERF.
    Stelzl U; Spahn CM; Nierhaus KH
    Proc Natl Acad Sci U S A; 2000 Apr; 97(9):4597-602. PubMed ID: 10781065
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Structural and evolutionary insights into ribosomal RNA methylation.
    Sergiev PV; Aleksashin NA; Chugunova AA; Polikanov YS; Dontsova OA
    Nat Chem Biol; 2018 Feb; 14(3):226-235. PubMed ID: 29443970
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Interactions of translational factor EF-G with the bacterial ribosome before and after mRNA translocation.
    Wilson KS; Nechifor R
    J Mol Biol; 2004 Mar; 337(1):15-30. PubMed ID: 15001349
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.