BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

428 related articles for article (PubMed ID: 25870956)

  • 1. An experimental-nonlinear finite element study of a balloon expandable stent inside a realistic stenotic human coronary artery to investigate plaque and arterial wall injury.
    Karimi A; Razaghi R; Shojaei A; Navidbakhsh M
    Biomed Tech (Berl); 2015 Dec; 60(6):593-602. PubMed ID: 25870956
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A nonlinear finite element simulation of balloon expandable stent for assessment of plaque vulnerability inside a stenotic artery.
    Karimi A; Navidbakhsh M; Yamada H; Razaghi R
    Med Biol Eng Comput; 2014 Jul; 52(7):589-99. PubMed ID: 24888756
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Patient-specific Finite Element Model of Coronary Artery Stenting.
    Razaghi R; Karimi A; Taheri RA
    Curr Pharm Des; 2018; 24(37):4492-4502. PubMed ID: 30514186
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The influence of plaque composition on underlying arterial wall stress during stent expansion: the case for lesion-specific stents.
    Pericevic I; Lally C; Toner D; Kelly DJ
    Med Eng Phys; 2009 May; 31(4):428-33. PubMed ID: 19129001
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A finite element investigation on plaque vulnerability in realistic healthy and atherosclerotic human coronary arteries.
    Karimi A; Navidbakhsh M; Faghihi S; Shojaei A; Hassani K
    Proc Inst Mech Eng H; 2013 Feb; 227(2):148-61. PubMed ID: 23513986
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Tissue prolapse and stresses in stented coronary arteries: A computer model for multi-layer atherosclerotic plaque.
    Hajiali Z; Dabagh M; Debusschere N; De Beule M; Jalali P
    Comput Biol Med; 2015 Nov; 66():39-46. PubMed ID: 26378501
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Analysis of the stent expansion in a stenosed artery using finite element method: application to stent versus stent study.
    Imani SM; Goudarzi AM; Ghasemi SE; Kalani A; Mahdinejad J
    Proc Inst Mech Eng H; 2014 Oct; 228(10):996-1004. PubMed ID: 25406228
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Discordance of the areas of peak wall shear stress and tissue stress in coronary artery plaques as revealed by fluid-structure interaction finite element analysis: a case study.
    Asanuma T; Higashikuni Y; Yamashita H; Nagai R; Hisada T; Sugiura S
    Int Heart J; 2013; 54(1):54-8. PubMed ID: 23428927
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Comparative study of tapered versus conventional cylindrical balloon for stent implantation in stenotic tapered artery.
    Shen X; Jiang J; Zhu H; Lu K; Dong P; Gu L
    Artif Organs; 2020 Jul; 44(7):727-735. PubMed ID: 32017159
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Simulation of a balloon expandable stent in a realistic coronary artery-Determination of the optimum modelling strategy.
    Zahedmanesh H; John Kelly D; Lally C
    J Biomech; 2010 Aug; 43(11):2126-32. PubMed ID: 20452594
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Stainless and shape memory alloy coronary stents: a computational study on the interaction with the vascular wall.
    Migliavacca F; Petrini L; Massarotti P; Schievano S; Auricchio F; Dubini G
    Biomech Model Mechanobiol; 2004 Jun; 2(4):205-17. PubMed ID: 15029511
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Finite element analysis of the implantation of a balloon-expandable stent in a stenosed artery.
    Liang DK; Yang DZ; Qi M; Wang WQ
    Int J Cardiol; 2005 Oct; 104(3):314-8. PubMed ID: 16186062
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effects of material, coating, design and plaque composition on stent deployment inside a stenotic artery--finite element simulation.
    Schiavone A; Zhao LG; Abdel-Wahab AA
    Mater Sci Eng C Mater Biol Appl; 2014 Sep; 42():479-88. PubMed ID: 25063145
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Biomechanical Impact of Wrong Positioning of a Dedicated Stent for Coronary Bifurcations: A Virtual Bench Testing Study.
    Chiastra C; Grundeken MJ; Collet C; Wu W; Wykrzykowska JJ; Pennati G; Dubini G; Migliavacca F
    Cardiovasc Eng Technol; 2018 Sep; 9(3):415-426. PubMed ID: 29777394
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cardiovascular stent design and vessel stresses: a finite element analysis.
    Lally C; Dolan F; Prendergast PJ
    J Biomech; 2005 Aug; 38(8):1574-81. PubMed ID: 15958213
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mechanical Interaction of an Expanding Coiled Stent with a Plaque-Containing Arterial Wall: A Finite Element Analysis.
    Welch TR; Eberhart RC; Banerjee S; Chuong CJ
    Cardiovasc Eng Technol; 2016 Mar; 7(1):58-68. PubMed ID: 26621671
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Sequential Structural and Fluid Dynamics Analysis of Balloon-Expandable Coronary Stents: A Multivariable Statistical Analysis.
    Martin D; Boyle F
    Cardiovasc Eng Technol; 2015 Sep; 6(3):314-28. PubMed ID: 26577363
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Numerical Modeling of Nitinol Stent Oversizing in Arteries with Clinically Relevant Levels of Peripheral Arterial Disease: The Influence of Plaque Type on the Outcomes of Endovascular Therapy.
    Gökgöl C; Diehm N; Büchler P
    Ann Biomed Eng; 2017 Jun; 45(6):1420-1433. PubMed ID: 28150055
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Local hemodynamic changes caused by main branch stent implantation and subsequent virtual side branch balloon angioplasty in a representative coronary bifurcation.
    Williams AR; Koo BK; Gundert TJ; Fitzgerald PJ; LaDisa JF
    J Appl Physiol (1985); 2010 Aug; 109(2):532-40. PubMed ID: 20507966
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Stent-induced changes of coronary morphology--pathologic-anatomic and experimental findings after balloon expansion].
    Grewe PH; Deneke T; Müller KM
    Z Kardiol; 2001 Sep; 90(9):630-6. PubMed ID: 11677799
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 22.