These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

210 related articles for article (PubMed ID: 25871063)

  • 21. Emergence of Fourier's Law of Heat Transport in Quantum Electron Systems.
    Inui S; Stafford CA; Bergfield JP
    ACS Nano; 2018 May; 12(5):4304-4311. PubMed ID: 29648783
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Excess free energy and Casimir forces in systems with long-range interactions of van der Waals type: general considerations and exact spherical-model results.
    Dantchev D; Diehl HW; Grüneberg D
    Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Jan; 73(1 Pt 2):016131. PubMed ID: 16486240
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Numerical Study on Generalized Heat and Mass in Casson Fluid with Hybrid Nanostructures.
    Sadiq MA; Bahaidarah HMS
    Nanomaterials (Basel); 2021 Oct; 11(10):. PubMed ID: 34685110
    [TBL] [Abstract][Full Text] [Related]  

  • 24. First-Principle Validation of Fourier's Law: One-Dimensional Classical Inertial Heisenberg Model.
    Lima HS; Tsallis C; Nobre FD
    Entropy (Basel); 2023 Dec; 26(1):. PubMed ID: 38248151
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Size effects in long-term quasistatic heat transport.
    Panasyuk GY; Yerkes KL
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Jun; 87(6):062118. PubMed ID: 23848638
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Quantum transport efficiency and Fourier's law.
    Manzano D; Tiersch M; Asadian A; Briegel HJ
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Dec; 86(6 Pt 1):061118. PubMed ID: 23367904
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Heat conduction and Fourier's law by consecutive local mixing and thermalization.
    Gaspard P; Gilbert T
    Phys Rev Lett; 2008 Jul; 101(2):020601. PubMed ID: 18764167
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Universal scaling for recovery of Fourier's law in low-dimensional solids under momentum conservation.
    Sato DS
    Phys Rev E; 2020 Jul; 102(1-1):012111. PubMed ID: 32795016
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Heat conduction in a one-dimensional gas of elastically colliding particles of unequal masses.
    Dhar A
    Phys Rev Lett; 2001 Apr; 86(16):3554-7. PubMed ID: 11328021
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Comment on "Simple one-dimensional model of heat conduction which obeys Fourier's law".
    Li H; Wang Y; Zhao H
    Phys Rev Lett; 2002 Aug; 89(7):079401; author reply 079402. PubMed ID: 12190560
    [No Abstract]   [Full Text] [Related]  

  • 31. Comment on "Simple One-Dimensional Model of Heat Conduction which Obeys Fourier's Law".
    Dhar A
    Phys Rev Lett; 2002 Jun; 88(24):249401; discussion 249401. PubMed ID: 12059337
    [No Abstract]   [Full Text] [Related]  

  • 32. Exploring different regimes in finite-size scaling of the droplet condensation-evaporation transition.
    Zierenberg J; Janke W
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Jul; 92(1):012134. PubMed ID: 26274151
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Revised Formulation of Fick's, Fourier's, and Newton's Laws for Spatially Varying Linear Transport Coefficients.
    Won YY; Ramkrishna D
    ACS Omega; 2019 Jun; 4(6):11215-11222. PubMed ID: 31460222
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Universal scaling laws of diffusion: application to liquid metals.
    Samanta A; Musharaf Ali S; Ghosh SK
    J Chem Phys; 2005 Aug; 123(8):084505. PubMed ID: 16164310
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Dissipation and entropy production in deterministic heat conduction of quasi-one-dimensional systems.
    Morriss GP; Truant DP
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Jun; 87(6):062144. PubMed ID: 23848664
    [TBL] [Abstract][Full Text] [Related]  

  • 36. How Local and Average Particle Diffusivities of Inhomogeneous Fluids Depend on Microscopic Dynamics.
    Bollinger JA; Jain A; Truskett TM
    J Phys Chem B; 2015 Jul; 119(29):9103-13. PubMed ID: 25350488
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Test of a new heat-flow equation for dense-fluid shock waves.
    Holian BL; Mareschal M; Ravelo R
    J Chem Phys; 2010 Sep; 133(11):114502. PubMed ID: 20866140
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Finite-size effects in film geometry with nonperiodic boundary conditions: Gaussian model and renormalization-group theory at fixed dimension.
    Kastening B; Dohm V
    Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Jun; 81(6 Pt 1):061106. PubMed ID: 20866377
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Heat-flow equation motivated by the ideal-gas shock wave.
    Holian BL; Mareschal M
    Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Aug; 82(2 Pt 2):026707. PubMed ID: 20866940
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Scaling and nonscaling finite-size effects in the Gaussian and the mean spherical model with free boundary conditions.
    Chen XS; Dohm V
    Phys Rev E Stat Nonlin Soft Matter Phys; 2003 May; 67(5 Pt 2):056127. PubMed ID: 12786240
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.