These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
253 related articles for article (PubMed ID: 25871070)
1. Completely packed O(n) loop models and their relation with exactly solved coloring models. Wang Y; Guo W; Blöte HW Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Mar; 91(3):032123. PubMed ID: 25871070 [TBL] [Abstract][Full Text] [Related]
2. Special transitions in an O(n) loop model with an Ising-like constraint. Fu Z; Guo W; Blöte HW Phys Rev E; 2016 Apr; 93():042108. PubMed ID: 27176255 [TBL] [Abstract][Full Text] [Related]
3. Ising-like transitions in the O(n) loop model on the square lattice. Fu Z; Guo W; Blöte HW Phys Rev E Stat Nonlin Soft Matter Phys; 2013 May; 87(5):052118. PubMed ID: 23767498 [TBL] [Abstract][Full Text] [Related]
5. Critical properties of a dilute O(n) model on the kagome lattice. Li B; Guo W; Blöte HW Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Aug; 78(2 Pt 1):021128. PubMed ID: 18850807 [TBL] [Abstract][Full Text] [Related]
6. Tricritical O(n) models in two dimensions. Nienhuis B; Guo W; Blöte HW Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Dec; 78(6 Pt 1):061104. PubMed ID: 19256799 [TBL] [Abstract][Full Text] [Related]
7. Phase transition in the n > 2 honeycomb O(n) model. Guo W; Blote HW; Wu FY Phys Rev Lett; 2000 Oct; 85(18):3874-7. PubMed ID: 11041949 [TBL] [Abstract][Full Text] [Related]
8. Dense loops, supersymmetry, and Goldstone phases in two dimensions. Jacobsen JL; Read N; Saleur H Phys Rev Lett; 2003 Mar; 90(9):090601. PubMed ID: 12689207 [TBL] [Abstract][Full Text] [Related]
9. Finite-size analysis of the hard-square lattice gas. Guo W; Blöte HW Phys Rev E Stat Nonlin Soft Matter Phys; 2002 Oct; 66(4 Pt 2):046140. PubMed ID: 12443292 [TBL] [Abstract][Full Text] [Related]
10. Ising-like phase transition of an n-component Eulerian face-cubic model. Ding C; Guo W; Deng Y Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Nov; 88(5):052125. PubMed ID: 24329232 [TBL] [Abstract][Full Text] [Related]
11. Crossing bonds in the random-cluster model. Guo W; Deng Y; Blöte HW Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Jun; 79(6 Pt 1):061112. PubMed ID: 19658478 [TBL] [Abstract][Full Text] [Related]
12. Nonequilibrium phase transition in an exactly solvable driven Ising model with friction. Hucht A Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Dec; 80(6 Pt 1):061138. PubMed ID: 20365149 [TBL] [Abstract][Full Text] [Related]
13. Reentrant disorder-disorder transitions in generalized multicomponent Widom-Rowlinson models. Krčmár R; Šamaj L Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Nov; 92(5):052103. PubMed ID: 26651643 [TBL] [Abstract][Full Text] [Related]
14. Interacting classical dimers on the square lattice. Alet F; Jacobsen JL; Misguich G; Pasquier V; Mila F; Troyer M Phys Rev Lett; 2005 Jun; 94(23):235702. PubMed ID: 16090482 [TBL] [Abstract][Full Text] [Related]
15. Convex-set description of quantum phase transitions in the transverse Ising model using reduced-density-matrix theory. Schwerdtfeger CA; Mazziotti DA J Chem Phys; 2009 Jun; 130(22):224102. PubMed ID: 19530757 [TBL] [Abstract][Full Text] [Related]
16. Topological Characterization of Extended Quantum Ising Models. Zhang G; Song Z Phys Rev Lett; 2015 Oct; 115(17):177204. PubMed ID: 26551140 [TBL] [Abstract][Full Text] [Related]
17. Thermal denaturation of fluctuating finite DNA chains: the role of bending rigidity in bubble nucleation. Palmeri J; Manghi M; Destainville N Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Jan; 77(1 Pt 1):011913. PubMed ID: 18351882 [TBL] [Abstract][Full Text] [Related]
18. Fluctuation cumulant behavior for the field-pulse-induced magnetization-reversal transition in Ising models. Chatterjee A; Chakrabarti BK Phys Rev E Stat Nonlin Soft Matter Phys; 2003 Apr; 67(4 Pt 2):046113. PubMed ID: 12786442 [TBL] [Abstract][Full Text] [Related]
19. Critical line of an n-component cubic model. Guo W; Qian X; Blöte HW; Wu FY Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Feb; 73(2 Pt 2):026104. PubMed ID: 16605395 [TBL] [Abstract][Full Text] [Related]
20. Potts and percolation models on bowtie lattices. Ding C; Wang Y; Li Y Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Aug; 86(2 Pt 1):021125. PubMed ID: 23005740 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]