These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

159 related articles for article (PubMed ID: 25871122)

  • 1. Spontaneous change in trajectory patterns of a self-propelled oil droplet at the air-surfactant solution interface.
    Tanaka S; Sogabe Y; Nakata S
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Mar; 91(3):032406. PubMed ID: 25871122
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Self-propelled motion of a droplet induced by Marangoni-driven spreading.
    Chen YJ; Nagamine Y; Yoshikawa K
    Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Jul; 80(1 Pt 2):016303. PubMed ID: 19658802
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A surfactant reaction model for the reciprocating motion of a self-propelled droplet.
    Tanaka S; Nakata S; Nagayama M
    Soft Matter; 2021 Jan; 17(2):388-396. PubMed ID: 33174574
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Regular self-motion of a liquid droplet powered by the chemical marangoni effect.
    Nagai K; Sumino Y; Yoshikawa K
    Colloids Surf B Biointerfaces; 2007 Apr; 56(1-2):197-200. PubMed ID: 17169535
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Interface dynamics under nonequilibrium conditions: from a self-propelled droplet to dynamic pattern evolution.
    Chen YJ; Yoshikawa K
    Eur Phys J E Soft Matter; 2011 Apr; 34(4):38. PubMed ID: 21509663
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Self-motion of an oil droplet: a simple physicochemical model of active Brownian motion.
    Sumino Y; Yoshikawa K
    Chaos; 2008 Jun; 18(2):026106. PubMed ID: 18601508
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Interfacial Dynamics in the Spontaneous Motion of an Aqueous Droplet.
    Suematsu NJ; Saikusa K; Nagata T; Izumi S
    Langmuir; 2019 Sep; 35(35):11601-11607. PubMed ID: 31397577
    [TBL] [Abstract][Full Text] [Related]  

  • 8. pH-dependent motion of self-propelled droplets due to Marangoni effect at neutral pH.
    Ban T; Yamagami T; Nakata H; Okano Y
    Langmuir; 2013 Feb; 29(8):2554-61. PubMed ID: 23369012
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Self-propelled motion switching in nematic liquid crystal droplets in aqueous surfactant solutions.
    Suga M; Suda S; Ichikawa M; Kimura Y
    Phys Rev E; 2018 Jun; 97(6-1):062703. PubMed ID: 30011466
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Start of Micrometer-Sized Oil Droplet Motion through Generation of Surfactants.
    Kasuo Y; Kitahata H; Koyano Y; Takinoue M; Asakura K; Banno T
    Langmuir; 2019 Oct; 35(41):13351-13355. PubMed ID: 31550892
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Self-attraction into spinning eigenstates of a mobile wave source by its emission back-reaction.
    Labousse M; Perrard S; Couder Y; Fort E
    Phys Rev E; 2016 Oct; 94(4-1):042224. PubMed ID: 27841606
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Flow-Driven Self-Propulsion of Oil Droplet on a Surfactant Solution Surface, as Observed by Time-Resolved Interfacial Tension and Surface Flow Speed Measurements.
    Nomoto T; Kimura H; Chiari L; Toyota T; Fujinami M
    Langmuir; 2024 Feb; 40(8):4468-4474. PubMed ID: 38363648
    [TBL] [Abstract][Full Text] [Related]  

  • 13. pH-Sensitive self-propelled motion of oil droplets in the presence of cationic surfactants containing hydrolyzable ester linkages.
    Banno T; Kuroha R; Toyota T
    Langmuir; 2012 Jan; 28(2):1190-5. PubMed ID: 22149384
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Experimental Investigation of the Self-Propelled Motion of a Sodium Oleate Tablet and Boat at an Oil-Water Interface.
    Watahiki Y; Nomoto T; Chiari L; Toyota T; Fujinami M
    Langmuir; 2018 May; 34(19):5487-5494. PubMed ID: 29693399
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Molecular System for the Division of Self-Propelled Oil Droplets by Component Feeding.
    Banno T; Toyota T
    Langmuir; 2015 Jun; 31(25):6943-7. PubMed ID: 26073277
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Analysis of different self-propulsion types of oil droplets based on electrostatic interaction effects.
    Noguchi M; Yamada M; Sawada H
    RSC Adv; 2022 Jun; 12(29):18354-18362. PubMed ID: 35799924
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Surfactant solutions and porous substrates: spreading and imbibition.
    Starov VM
    Adv Colloid Interface Sci; 2004 Nov; 111(1-2):3-27. PubMed ID: 15571660
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Self-Propelled Motion of Monodisperse Underwater Oil Droplets Formed by a Microfluidic Device.
    Ueno N; Banno T; Asami A; Kazayama Y; Morimoto Y; Osaki T; Takeuchi S; Kitahata H; Toyota T
    Langmuir; 2017 Jun; 33(22):5393-5397. PubMed ID: 28502179
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Oscillation of Speed of a Self-Propelled Belousov-Zhabotinsky Droplet.
    Suematsu NJ; Mori Y; Amemiya T; Nakata S
    J Phys Chem Lett; 2016 Sep; 7(17):3424-8. PubMed ID: 27532330
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Gravitational settling of active droplets.
    Castonguay AC; Kailasham R; Wentworth CM; Meredith CH; Khair AS; Zarzar LD
    Phys Rev E; 2023 Feb; 107(2-1):024608. PubMed ID: 36932547
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.