These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

83 related articles for article (PubMed ID: 25871149)

  • 1. Atomic torsional modal analysis for high-resolution proteins.
    Tirion MM; ben-Avraham D
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Mar; 91(3):032712. PubMed ID: 25871149
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Slow normal modes of proteins are accurately reproduced across different platforms.
    Na H; Ben-Avraham D; Tirion MM
    Phys Biol; 2018 Nov; 16(1):016003. PubMed ID: 30238928
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Computational mutagenesis reveals the role of active-site tyrosine in stabilising a boat conformation for the substrate: QM/MM molecular dynamics studies of wild-type and mutant xylanases.
    Soliman ME; Ruggiero GD; Pernía JJ; Greig IR; Williams IH
    Org Biomol Chem; 2009 Feb; 7(3):460-8. PubMed ID: 19156310
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The structure of an inverting GH43 beta-xylosidase from Geobacillus stearothermophilus with its substrate reveals the role of the three catalytic residues.
    Brüx C; Ben-David A; Shallom-Shezifi D; Leon M; Niefind K; Shoham G; Shoham Y; Schomburg D
    J Mol Biol; 2006 May; 359(1):97-109. PubMed ID: 16631196
    [TBL] [Abstract][Full Text] [Related]  

  • 5. PDB-NMA of a protein homodimer reproduces distinct experimental motility asymmetry.
    Tirion MM; Ben-Avraham D
    Phys Biol; 2018 Jan; 15(2):026004. PubMed ID: 29251625
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Structural and functional analyses of a glycoside hydrolase family 5 enzyme with an unexpected β-fucosidase activity.
    Yoshida S; Park DS; Bae B; Mackie R; Cann IK; Nair SK
    Biochemistry; 2011 Apr; 50(16):3369-75. PubMed ID: 21410228
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Universality of vibrational spectra of globular proteins.
    Na H; Song G; ben-Avraham D
    Phys Biol; 2016 Feb; 13(1):016008. PubMed ID: 26907186
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Structural insights into the acidophilic pH adaptation of a novel endo-1,4-β-xylanase from Scytalidium acidophilum.
    Michaux C; Pouyez J; Mayard A; Vandurm P; Housen I; Wouters J
    Biochimie; 2010 Oct; 92(10):1407-15. PubMed ID: 20621155
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Prediction and rationalization of the pH dependence of the activity and stability of family 11 xylanases.
    Kongsted J; Ryde U; Wydra J; Jensen JH
    Biochemistry; 2007 Nov; 46(47):13581-92. PubMed ID: 17960918
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Understanding the structural basis for substrate and inhibitor recognition in eukaryotic GH11 xylanases.
    Vardakou M; Dumon C; Murray JW; Christakopoulos P; Weiner DP; Juge N; Lewis RJ; Gilbert HJ; Flint JE
    J Mol Biol; 2008 Feb; 375(5):1293-305. PubMed ID: 18078955
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Determination of thioxylo-oligosaccharide binding to family 11 xylanases using electrospray ionization Fourier transform ion cyclotron resonance mass spectrometry and X-ray crystallography.
    Jänis J; Hakanpää J; Hakulinen N; Ibatullin FM; Hoxha A; Derrick PJ; Rouvinen J; Vainiotalo P
    FEBS J; 2005 May; 272(9):2317-33. PubMed ID: 15853815
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Structural basis of the substrate subsite and the highly thermal stability of xylanase 10B from Thermotoga maritima MSB8.
    Ihsanawati ; Kumasaka T; Kaneko T; Morokuma C; Yatsunami R; Sato T; Nakamura S; Tanaka N
    Proteins; 2005 Dec; 61(4):999-1009. PubMed ID: 16247799
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Density functional method including weak interactions: Dispersion coefficients based on the local response approximation.
    Sato T; Nakai H
    J Chem Phys; 2009 Dec; 131(22):224104. PubMed ID: 20001021
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cloning and enzymatic characterization of four thermostable fungal endo-1,4-β-xylanases.
    Sydenham R; Zheng Y; Riemens A; Tsang A; Powlowski J; Storms R
    Appl Microbiol Biotechnol; 2014 Apr; 98(8):3613-28. PubMed ID: 24085392
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Molecular dynamics studies on the thermostability of family 11 xylanases.
    Purmonen M; Valjakka J; Takkinen K; Laitinen T; Rouvinen J
    Protein Eng Des Sel; 2007 Nov; 20(11):551-9. PubMed ID: 17977846
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Structural determinants of the substrate specificities of xylanases from different glycoside hydrolase families.
    Pollet A; Delcour JA; Courtin CM
    Crit Rev Biotechnol; 2010 Sep; 30(3):176-91. PubMed ID: 20225927
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Microbial xylanases: engineering, production and industrial applications.
    Juturu V; Wu JC
    Biotechnol Adv; 2012; 30(6):1219-27. PubMed ID: 22138412
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Improving catalytic efficiency of endo-β-1, 4-xylanase from Geobacillus stearothermophilus by directed evolution and H179 saturation mutagenesis.
    Wang Y; Feng S; Zhan T; Huang Z; Wu G; Liu Z
    J Biotechnol; 2013 Dec; 168(4):341-7. PubMed ID: 24157442
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A new force field (ECEPP-05) for peptides, proteins, and organic molecules.
    Arnautova YA; Jagielska A; Scheraga HA
    J Phys Chem B; 2006 Mar; 110(10):5025-44. PubMed ID: 16526746
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Two novel GH11 endo-xylanases from Myceliophthora thermophila C1 act differently toward soluble and insoluble xylans.
    van Gool MP; van Muiswinkel GC; Hinz SW; Schols HA; Sinitsyn AP; Gruppen H
    Enzyme Microb Technol; 2013 Jun; 53(1):25-32. PubMed ID: 23683701
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.