These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

154 related articles for article (PubMed ID: 25871178)

  • 1. Computer simulations of three-dimensional Turing patterns in the Lengyel-Epstein model.
    Shoji H; Ohta T
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Mar; 91(3):032913. PubMed ID: 25871178
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Interconnected Turing patterns in three dimensions.
    Shoji H; Yamada K; Ohta T
    Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Dec; 72(6 Pt 2):065202. PubMed ID: 16486001
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Square Turing patterns in reaction-diffusion systems with coupled layers.
    Li J; Wang H; Ouyang Q
    Chaos; 2014 Jun; 24(2):023115. PubMed ID: 24985429
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Turing patterns in three dimensions.
    Shoji H; Yamada K; Ueyama D; Ohta T
    Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Apr; 75(4 Pt 2):046212. PubMed ID: 17500983
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Noise-reversed stability of Turing patterns versus Hopf oscillations near codimension-two conditions.
    Alonso S; Sagués F
    Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Sep; 80(3 Pt 2):035203. PubMed ID: 19905167
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effects of cross diffusion on Turing bifurcations in two-species reaction-transport systems.
    Kumar N; Horsthemke W
    Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Mar; 83(3 Pt 2):036105. PubMed ID: 21517556
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Helical Turing patterns in the Lengyel-Epstein model in thin cylindrical layers.
    Bánsági T; Taylor AF
    Chaos; 2015 Jun; 25(6):064308. PubMed ID: 26117119
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Turing pattern formation in fractional activator-inhibitor systems.
    Henry BI; Langlands TA; Wearne SL
    Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Aug; 72(2 Pt 2):026101. PubMed ID: 16196638
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Turing patterns on radially growing domains: experiments and simulations.
    Konow C; Somberg NH; Chavez J; Epstein IR; Dolnik M
    Phys Chem Chem Phys; 2019 Mar; 21(12):6718-6724. PubMed ID: 30860212
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Why Turing mechanism is an obstacle to stationary periodic patterns in bounded reaction-diffusion media with advection.
    Yochelis A; Sheintuch M
    Phys Chem Chem Phys; 2010 Apr; 12(16):3957-60. PubMed ID: 20379487
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Tomography of reaction-diffusion microemulsions reveals three-dimensional Turing patterns.
    Bánsági T; Vanag VK; Epstein IR
    Science; 2011 Mar; 331(6022):1309-12. PubMed ID: 21310963
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Turing-like instabilities from a limit cycle.
    Challenger JD; Burioni R; Fanelli D
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Aug; 92(2):022818. PubMed ID: 26382465
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Stripe-hexagon competition in forced pattern-forming systems with broken up-down symmetry.
    Peter R; Hilt M; Ziebert F; Bammert J; Erlenkämper C; Lorscheid N; Weitenberg C; Winter A; Hammele M; Zimmermann W
    Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Apr; 71(4 Pt 2):046212. PubMed ID: 15903775
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Dynamics of Turing patterns under spatiotemporal forcing.
    Rüdiger S; Míguez DG; Muñuzuri AP; Sagués F; Casademunt J
    Phys Rev Lett; 2003 Mar; 90(12):128301. PubMed ID: 12688908
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Morphological transitions and bistability in Turing systems.
    Leppänen T; Karttunen M; Barrio RA; Kaski K
    Phys Rev E Stat Nonlin Soft Matter Phys; 2004 Dec; 70(6 Pt 2):066202. PubMed ID: 15697479
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Turing patterns, spatial bistability, and front interactions in the [ClO2, I2, I-, CH2(COOH)2] reaction.
    Strier DE; De Kepper P; Boissonade J
    J Phys Chem A; 2005 Feb; 109(7):1357-63. PubMed ID: 16833452
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Finite-size effects in film geometry with nonperiodic boundary conditions: Gaussian model and renormalization-group theory at fixed dimension.
    Kastening B; Dohm V
    Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Jun; 81(6 Pt 1):061106. PubMed ID: 20866377
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Turing instability in reaction-subdiffusion systems.
    Yadav A; Milu SM; Horsthemke W
    Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Aug; 78(2 Pt 2):026116. PubMed ID: 18850906
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Stable squares and other oscillatory turing patterns in a reaction-diffusion model.
    Yang L; Zhabotinsky AM; Epstein IR
    Phys Rev Lett; 2004 May; 92(19):198303. PubMed ID: 15169455
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Three-dimensional patterns in the Lengyel-Rabai-Epstein model of the chlorine dioxide-iodine-malonic acid reaction.
    Moore PK; Horsthemke W
    Chaos; 2009 Dec; 19(4):043116. PubMed ID: 20059212
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.