These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

225 related articles for article (PubMed ID: 25871216)

  • 1. Scaling regimes of thermocapillarity-driven dynamics of confined long bubbles: Effects of disjoining pressure.
    Chaudhury K; Chakraborty S
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Mar; 91(3):033021. PubMed ID: 25871216
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Influence of disjoining pressure on the dynamics of steadily moving long bubbles inside narrow cylindrical capillaries.
    Chaudhury K; Acharya PV; Chakraborty S
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 May; 89(5):053002. PubMed ID: 25353875
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Thermocapillarity in Microfluidics-A Review.
    Karbalaei A; Kumar R; Cho HJ
    Micromachines (Basel); 2016 Jan; 7(1):. PubMed ID: 30407386
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Spreading of nanofluids driven by the structural disjoining pressure gradient.
    Chengara A; Nikolov AD; Wasan DT; Trokhymchuk A; Henderson D
    J Colloid Interface Sci; 2004 Dec; 280(1):192-201. PubMed ID: 15476790
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Lattice Boltzmann simulations of droplet formation in confined channels with thermocapillary flows.
    Gupta A; Sbragaglia M; Belardinelli D; Sugiyama K
    Phys Rev E; 2016 Dec; 94(6-1):063302. PubMed ID: 28085339
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Water film squeezed between oil and solid: drainage towards stabilization by disjoining pressure.
    Bluteau L; Bourrel M; Passade-Boupat N; Talini L; Verneuil E; Lequeux F
    Soft Matter; 2017 Feb; 13(7):1384-1395. PubMed ID: 28120999
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Surface force at the nano-scale: observation of non-monotonic surface tension and disjoining pressure.
    Peng T; Firouzi M; Li Q; Peng K
    Phys Chem Chem Phys; 2015 Aug; 17(32):20502-7. PubMed ID: 26171587
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Stability of a volatile liquid film spreading along a heterogeneously-heated substrate.
    Tiwari N; Davis JM
    J Colloid Interface Sci; 2011 Mar; 355(1):243-51. PubMed ID: 21208626
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Droplets in Microchannels: Dynamical Properties of the Lubrication Film.
    Huerre A; Theodoly O; Leshansky AM; Valignat MP; Cantat I; Jullien MC
    Phys Rev Lett; 2015 Aug; 115(6):064501. PubMed ID: 26296118
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Spreading and retraction as a function of drop size.
    Ghosh M; Stebe KJ
    Adv Colloid Interface Sci; 2010 Dec; 161(1-2):61-76. PubMed ID: 20817136
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Spreading of a droplet over a nonisothermal substrate: multiple scaling regimes.
    Chaudhury K; Chakraborty S
    Langmuir; 2015 Apr; 31(14):4169-75. PubMed ID: 25785494
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Foam drainage control using thermocapillary stress in a two-dimensional microchamber.
    Miralles V; Selva B; Cantat I; Jullien MC
    Phys Rev Lett; 2014 Jun; 112(23):238302. PubMed ID: 24972233
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Scaling crossover in thin-film drag dynamics of fluid drops in the Hele-Shaw cell.
    Yahashi M; Kimoto N; Okumura K
    Sci Rep; 2016 Aug; 6():31395. PubMed ID: 27562151
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of disjoining pressure on the drainage and relaxation dynamics of liquid films with mobile interfaces.
    Tabakova SS; Danov KD
    J Colloid Interface Sci; 2009 Aug; 336(1):273-84. PubMed ID: 19394624
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Viscous dynamics of drops and bubbles in Hele-Shaw cells: Drainage, drag friction, coalescence, and bursting.
    Okumura K
    Adv Colloid Interface Sci; 2018 May; 255():64-75. PubMed ID: 28821348
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Evolution of dry patches in evaporating liquid films.
    Ajaev VS
    Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Sep; 72(3 Pt 1):031605. PubMed ID: 16241452
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Slippery when wet: mobility regimes of confined drops in electrowetting.
    Baratian D; Ruiz-Gutiérrez É; Mugele F; Ledesma-Aguilar R
    Soft Matter; 2019 Sep; 15(35):7063-7070. PubMed ID: 31441482
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Capillary wave theory of adsorbed liquid films and the structure of the liquid-vapor interface.
    MacDowell LG
    Phys Rev E; 2017 Aug; 96(2-1):022801. PubMed ID: 28950477
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Dynamics of a thin liquid film interacting with an oscillating nano-probe.
    Ledesma-Alonso R; Tordjeman P; Legendre D
    Soft Matter; 2014 Oct; 10(39):7736-52. PubMed ID: 25142053
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Formation of droplets and bubbles in a microfluidic T-junction-scaling and mechanism of break-up.
    Garstecki P; Fuerstman MJ; Stone HA; Whitesides GM
    Lab Chip; 2006 Mar; 6(3):437-46. PubMed ID: 16511628
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.