These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

359 related articles for article (PubMed ID: 25871241)

  • 1. Lattice Boltzmann model for the correct convection-diffusion equation with divergence-free velocity field.
    Huang R; Wu H
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Mar; 91(3):033302. PubMed ID: 25871241
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Lattice Boltzmann model for the convection-diffusion equation.
    Chai Z; Zhao TS
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Jun; 87(6):063309. PubMed ID: 23848808
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fourth-order multiple-relaxation-time lattice Boltzmann model and equivalent finite-difference scheme for one-dimensional convection-diffusion equations.
    Chen Y; Chai Z; Shi B
    Phys Rev E; 2023 May; 107(5-2):055305. PubMed ID: 37329033
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Nonequilibrium scheme for computing the flux of the convection-diffusion equation in the framework of the lattice Boltzmann method.
    Chai Z; Zhao TS
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Jul; 90(1):013305. PubMed ID: 25122408
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Galilean invariant lattice Boltzmann scheme for natural convection on square and rectangular lattices.
    van der Sman RG
    Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Aug; 74(2 Pt 2):026705. PubMed ID: 17025565
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Macroscopic finite-difference scheme and modified equations of the general propagation multiple-relaxation-time lattice Boltzmann model.
    Chen Y; Liu X; Chai Z; Shi B
    Phys Rev E; 2024 Jun; 109(6-2):065305. PubMed ID: 39021022
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Regularized lattice Boltzmann model for a class of convection-diffusion equations.
    Wang L; Shi B; Chai Z
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Oct; 92(4):043311. PubMed ID: 26565368
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Lattice Boltzmann model for a steady radiative transfer equation.
    Yi HL; Yao FJ; Tan HP
    Phys Rev E; 2016 Aug; 94(2-1):023312. PubMed ID: 27627417
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Discrete unified gas kinetic scheme for nonlinear convection-diffusion equations.
    Shang J; Chai Z; Wang H; Shi B
    Phys Rev E; 2020 Feb; 101(2-1):023306. PubMed ID: 32168639
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Prediction of the moments in advection-diffusion lattice Boltzmann method. II. Attenuation of the boundary layers via double-Λ bounce-back flux scheme.
    Ginzburg I
    Phys Rev E; 2017 Jan; 95(1-1):013305. PubMed ID: 28208489
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Theory of the lattice Boltzmann method: acoustic and thermal properties in two and three dimensions.
    Lallemand P; Luo LS
    Phys Rev E Stat Nonlin Soft Matter Phys; 2003 Sep; 68(3 Pt 2):036706. PubMed ID: 14524925
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Multiblock approach for the passive scalar thermal lattice Boltzmann method.
    Huang R; Wu H
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Apr; 89(4):043303. PubMed ID: 24827361
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Phase-field-based lattice Boltzmann finite-difference model for simulating thermocapillary flows.
    Liu H; Valocchi AJ; Zhang Y; Kang Q
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Jan; 87(1):013010. PubMed ID: 23410429
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Implicit temperature-correction-based immersed-boundary thermal lattice Boltzmann method for the simulation of natural convection.
    Seta T
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Jun; 87(6):063304. PubMed ID: 23848803
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Theory of the lattice Boltzmann method: three-dimensional model for linear viscoelastic fluids.
    Lallemand P; D'Humières D; Luo LS; Rubinstein R
    Phys Rev E Stat Nonlin Soft Matter Phys; 2003 Feb; 67(2 Pt 1):021203. PubMed ID: 12636662
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Boundary condition at a two-phase interface in the lattice Boltzmann method for the convection-diffusion equation.
    Yoshida H; Kobayashi T; Hayashi H; Kinjo T; Washizu H; Fukuzawa K
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Jul; 90(1):013303. PubMed ID: 25122406
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mass conservative lattice Boltzmann scheme for a three-dimensional diffuse interface model with Peng-Robinson equation of state.
    Qiao Z; Yang X; Zhang Y
    Phys Rev E; 2018 Aug; 98(2-1):023306. PubMed ID: 30253477
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Axisymmetric lattice Boltzmann method.
    Zhou JG
    Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Sep; 78(3 Pt 2):036701. PubMed ID: 18851183
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Multiple-relaxation-time finite-difference lattice Boltzmann model for the nonlinear convection-diffusion equation.
    Chen X; Chai Z; Shang J; Shi B
    Phys Rev E; 2021 Sep; 104(3-2):035308. PubMed ID: 34654116
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Lattice Boltzmann Simulation of Spatial Fractional Convection-Diffusion Equation.
    Bi X; Wang H
    Entropy (Basel); 2024 Sep; 26(9):. PubMed ID: 39330101
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.