These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 25871244)

  • 1. Kinetic Monte Carlo algorithm for thermally induced breakdown of fiber bundles.
    Yoshioka N; Kun F; Ito N
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Mar; 91(3):033305. PubMed ID: 25871244
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Time-dependent fiber bundles with local load sharing. II. General Weibull fibers.
    Phoenix SL; Newman WI
    Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Dec; 80(6 Pt 2):066115. PubMed ID: 20365239
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Time-dependent fiber bundles with local load sharing.
    Newman WI; Phoenix SL
    Phys Rev E Stat Nonlin Soft Matter Phys; 2001 Feb; 63(2 Pt 1):021507. PubMed ID: 11308498
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Creep rupture of viscoelastic fiber bundles.
    Hidalgo RC; Kun F; Herrmann HJ
    Phys Rev E Stat Nonlin Soft Matter Phys; 2002 Mar; 65(3 Pt 1):032502. PubMed ID: 11909128
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Load capacity and rupture displacement in viscoelastic fiber bundles.
    Baxevanis T; Katsaounis T
    Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Apr; 75(4 Pt 2):046104. PubMed ID: 17500958
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Size scaling and bursting activity in thermally activated breakdown of fiber bundles.
    Yoshioka N; Kun F; Ito N
    Phys Rev Lett; 2008 Oct; 101(14):145502. PubMed ID: 18851540
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fractal frontiers of bursts and cracks in a fiber bundle model of creep rupture.
    Danku Z; Kun F; Herrmann HJ
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Dec; 92(6):062402. PubMed ID: 26764698
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Creep rupture of fiber bundles: A molecular dynamics investigation.
    Linga G; Ballone P; Hansen A
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Aug; 92(2):022405. PubMed ID: 26382414
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Relaxation creep rupture of heterogeneous material under constant strain.
    Hao SW; Zhang BJ; Tian JF
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Jan; 85(1 Pt 1):012501. PubMed ID: 22400604
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Scaling laws of creep rupture of fiber bundles.
    Kun F; Hidalgo RC; Herrmann HJ; Pál KF
    Phys Rev E Stat Nonlin Soft Matter Phys; 2003 Jun; 67(6 Pt 1):061802. PubMed ID: 16241249
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Strength distribution of planar local load-sharing bundles.
    Habeeb CN; Mahesh S
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Aug; 92(2):022125. PubMed ID: 26382362
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Fiber bundle model with highly disordered breaking thresholds.
    Roy C; Kundu S; Manna SS
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Mar; 91(3):032103. PubMed ID: 25871050
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Self-organized dynamics in local load-sharing fiber bundle models.
    Biswas S; Chakrabarti BK
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Oct; 88(4):042112. PubMed ID: 24229121
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Continuous damage fiber bundle model for strongly disordered materials.
    Raischel F; Kun F; Herrmann HJ
    Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Apr; 77(4 Pt 2):046102. PubMed ID: 18517685
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Failure process of a bundle of plastic fibers.
    Raischel F; Kun F; Herrmann HJ
    Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Jun; 73(6 Pt 2):066101. PubMed ID: 16906908
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Failure avalanches in fiber bundles for discrete load increase.
    Hemmer PC; Pradhan S
    Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Apr; 75(4 Pt 2):046101. PubMed ID: 17500955
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Creep rupture of materials: insights from a fiber bundle model with relaxation.
    Jagla EA
    Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Apr; 83(4 Pt 2):046119. PubMed ID: 21599252
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Local load-sharing fiber bundle model in higher dimensions.
    Sinha S; Kjellstadli JT; Hansen A
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Aug; 92(2):020401. PubMed ID: 26382331
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Distributions and size scalings for strength in a one-dimensional random lattice with load redistribution to nearest and next-nearest neighbors.
    Phoenix SL; Beyerlein IJ
    Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics; 2000 Aug; 62(2 Pt A):1622-45. PubMed ID: 11088624
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Temporal and spacial evolution of bursts in creep rupture.
    Danku Z; Kun F
    Phys Rev Lett; 2013 Aug; 111(8):084302. PubMed ID: 24010442
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.