These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
121 related articles for article (PubMed ID: 25871582)
1. Paper-based microfluidic devices in bioanalysis: how far have we come? Ge S; Zhang L; Yu J Bioanalysis; 2015; 7(6):633-6. PubMed ID: 25871582 [No Abstract] [Full Text] [Related]
8. Quantifying colorimetric assays in paper-based microfluidic devices by measuring the transmission of light through paper. Ellerbee AK; Phillips ST; Siegel AC; Mirica KA; Martinez AW; Striehl P; Jain N; Prentiss M; Whitesides GM Anal Chem; 2009 Oct; 81(20):8447-52. PubMed ID: 19722495 [TBL] [Abstract][Full Text] [Related]
9. Microfluidic designs and techniques using lab-on-a-chip devices for pathogen detection for point-of-care diagnostics. Foudeh AM; Fatanat Didar T; Veres T; Tabrizian M Lab Chip; 2012 Sep; 12(18):3249-66. PubMed ID: 22859057 [TBL] [Abstract][Full Text] [Related]
10. Embellishment of microfluidic devices via femtosecond laser micronanofabrication for chip functionalization. Wang J; He Y; Xia H; Niu LG; Zhang R; Chen QD; Zhang YL; Li YF; Zeng SJ; Qin JH; Lin BC; Sun HB Lab Chip; 2010 Aug; 10(15):1993-6. PubMed ID: 20508876 [TBL] [Abstract][Full Text] [Related]
11. Reagent pencils: a new technique for solvent-free deposition of reagents onto paper-based microfluidic devices. Mitchell HT; Noxon IC; Chaplan CA; Carlton SJ; Liu CH; Ganaja KA; Martinez NW; Immoos CE; Costanzo PJ; Martinez AW Lab Chip; 2015 May; 15(10):2213-20. PubMed ID: 25851055 [TBL] [Abstract][Full Text] [Related]
12. Lab-on-a-chip devices for global health: past studies and future opportunities. Chin CD; Linder V; Sia SK Lab Chip; 2007 Jan; 7(1):41-57. PubMed ID: 17180204 [TBL] [Abstract][Full Text] [Related]
13. Toner and paper-based fabrication techniques for microfluidic applications. Coltro WK; de Jesus DP; da Silva JA; do Lago CL; Carrilho E Electrophoresis; 2010 Aug; 31(15):2487-98. PubMed ID: 20665911 [TBL] [Abstract][Full Text] [Related]
14. Multiscale variation-aware techniques for high-performance digital microfluidic lab-on-a-chip component placement. Liao C; Hu S IEEE Trans Nanobioscience; 2011 Mar; 10(1):51-8. PubMed ID: 21511570 [TBL] [Abstract][Full Text] [Related]
15. Microfluidic interface technology based on stereolithography for glass-based lab-on-a-chips. Han SI; Han KH Methods Mol Biol; 2013; 949():169-84. PubMed ID: 23329443 [TBL] [Abstract][Full Text] [Related]
17. Integrated lab-on-chip and mass spectrometry: recent advances in bioanalysis. Bhushan R; Dubey R Bioanalysis; 2014; 6(14):1875-7. PubMed ID: 25158958 [No Abstract] [Full Text] [Related]
18. Two-ply channels for faster wicking in paper-based microfluidic devices. Camplisson CK; Schilling KM; Pedrotti WL; Stone HA; Martinez AW Lab Chip; 2015 Dec; 15(23):4461-6. PubMed ID: 26477676 [TBL] [Abstract][Full Text] [Related]
19. A portable pressure pump for microfluidic lab-on-a-chip systems using a porous polydimethylsiloxane (PDMS) sponge. Cha KJ; Kim DS Biomed Microdevices; 2011 Oct; 13(5):877-83. PubMed ID: 21698383 [TBL] [Abstract][Full Text] [Related]
20. Identification of microfluidic two-phase flow patterns in lab-on-chip devices. Yang Z; Dong T; Halvorsen E Biomed Mater Eng; 2014; 24(1):77-83. PubMed ID: 24211885 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]