These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 25871719)

  • 1. Monitoring of low levels of furfural in power transformer oil with a sensor system based on a POF-MIP platform.
    Cennamo N; De Maria L; D'Agostino G; Zeni L; Pesavento M
    Sensors (Basel); 2015 Apr; 15(4):8499-511. PubMed ID: 25871719
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A Molecularly Imprinted Polymer on a Plasmonic Plastic Optical Fiber to Detect Perfluorinated Compounds in Water.
    Cennamo N; D'Agostino G; Porto G; Biasiolo A; Perri C; Arcadio F; Zeni L
    Sensors (Basel); 2018 Jun; 18(6):. PubMed ID: 29874860
    [TBL] [Abstract][Full Text] [Related]  

  • 3. SPR-Optical Fiber-Molecularly Imprinted Polymer Sensor for the Detection of Furfural in Wine.
    Pesavento M; Zeni L; De Maria L; Alberti G; Cennamo N
    Biosensors (Basel); 2021 Mar; 11(3):. PubMed ID: 33807535
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Detection of 2-Furaldehyde in Milk by MIP-Based POF Chips Combined with an SPR-POF Sensor.
    Alberti G; Arcadio F; Pesavento M; Marzano C; Zeni L; Zeid NA; Cennamo N
    Sensors (Basel); 2022 Oct; 22(21):. PubMed ID: 36365986
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A Simple and Low-Cost Optical Fiber Intensity-Based Configuration for Perfluorinated Compounds in Water Solution.
    Cennamo N; D'Agostino G; Sequeira F; Mattiello F; Porto G; Biasiolo A; Nogueira R; Bilro L; Zeni L
    Sensors (Basel); 2018 Sep; 18(9):. PubMed ID: 30205565
    [TBL] [Abstract][Full Text] [Related]  

  • 6. pH-sensitive fluorescent organic nanoparticles: Off-on fluorescent detection of furfural in transformer oil.
    Chang C; Han L; Zhao Y; Li F
    Talanta; 2019 May; 197():383-389. PubMed ID: 30771951
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Facile electrochemical method and corresponding automated instrument for the detection of furfural in insulation oil.
    Wang R; Huang X; Wang L
    Talanta; 2016 Feb; 148():412-8. PubMed ID: 26653467
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A microvolume molecularly imprinted polymer modified fiber-optic evanescent wave sensor for bisphenol A determination.
    Xiong Y; Ye Z; Xu J; Liu Y; Zhang H
    Anal Bioanal Chem; 2014 Apr; 406(9-10):2411-20. PubMed ID: 24553664
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Simultaneous determination of furfural and its degradation products, furoic acid and maleic acid, in transformer oil by the reversed-phase vortex-assisted liquid-liquid microextraction followed by high-performance liquid chromatography.
    Wang Y; Li H; Yang Z; Zhang W; Hua J
    J Sep Sci; 2017 Dec; 40(24):4805-4812. PubMed ID: 29068516
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A Complete Optical Sensor System Based on a POF-SPR Platform and a Thermo-Stabilized Flow Cell for Biochemical Applications.
    Cennamo N; Chiavaioli F; Trono C; Tombelli S; Giannetti A; Baldini F; Zeni L
    Sensors (Basel); 2016 Feb; 16(2):196. PubMed ID: 26861328
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Optical fiber sensor for the detection of tetracycline using surface plasmon resonance and molecular imprinting.
    Verma R; Gupta BD
    Analyst; 2013 Dec; 138(23):7254-63. PubMed ID: 24098880
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Fiber optic profenofos sensor based on surface plasmon resonance technique and molecular imprinting.
    Shrivastav AM; Usha SP; Gupta BD
    Biosens Bioelectron; 2016 May; 79():150-7. PubMed ID: 26706813
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Splitter-Based Sensors Realized via POFs Coupled by a Micro-Trench Filled with a Molecularly Imprinted Polymer.
    Tavoletta I; Arcadio F; Renzullo LP; Oliva G; Del Prete D; Verolla D; Marzano C; Alberti G; Pesavento M; Zeni L; Cennamo N
    Sensors (Basel); 2024 Jun; 24(12):. PubMed ID: 38931712
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A quartz crystal microbalance sensor based on mussel-inspired molecularly imprinted polymer.
    Zhou WH; Tang SF; Yao QH; Chen FR; Yang HH; Wang XR
    Biosens Bioelectron; 2010 Oct; 26(2):585-9. PubMed ID: 20685108
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A novel composite of molecularly imprinted polymer-coated PdNPs for electrochemical sensing norepinephrine.
    Chen J; Huang H; Zeng Y; Tang H; Li L
    Biosens Bioelectron; 2015 Mar; 65():366-74. PubMed ID: 25461183
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Exploiting Plasmonic Phenomena in Polymer Optical Fibers to Realize a Force Sensor.
    Arcadio F; Zeni L; Cennamo N
    Sensors (Basel); 2022 Mar; 22(6):. PubMed ID: 35336562
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Development of a sensitive and selective kojic acid sensor based on molecularly imprinted polymer modified electrode in the lab-on-valve system.
    Wang Y; Tang J; Luo X; Hu X; Yang C; Xu Q
    Talanta; 2011 Oct; 85(5):2522-7. PubMed ID: 21962678
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Biomimetic piezoelectric quartz crystal sensor with chloramphenicol-imprinted polymer sensing layer.
    Ebarvia BS; Ubando IE; Sevilla FB
    Talanta; 2015 Nov; 144():1260-5. PubMed ID: 26452956
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Development of a selective and sensitive voltammetric sensor for propylparaben based on a nanosized molecularly imprinted polymer-carbon paste electrode.
    Gholivand MB; Shamsipur M; Dehdashtian S; Rajabi HR
    Mater Sci Eng C Mater Biol Appl; 2014 Mar; 36():102-7. PubMed ID: 24433892
    [TBL] [Abstract][Full Text] [Related]  

  • 20. An optical reflected device using a molecularly imprinted polymer film sensor.
    Wu N; Feng L; Tan Y; Hu J
    Anal Chim Acta; 2009 Oct; 653(1):103-8. PubMed ID: 19800481
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.