These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
110 related articles for article (PubMed ID: 25871925)
1. A Dual-Catalysis Anion-Binding Approach to the Kinetic Resolution of Amines: Insights into the Mechanism via a Combined Experimental and Computational Study. Mittal N; Lippert KM; De CK; Klauber EG; Emge TJ; Schreiner PR; Seidel D J Am Chem Soc; 2015 May; 137(17):5748-58. PubMed ID: 25871925 [TBL] [Abstract][Full Text] [Related]
2. Merging nucleophilic and hydrogen bonding catalysis: an anion binding approach to the kinetic resolution of propargylic amines. Klauber EG; De CK; Shah TK; Seidel D J Am Chem Soc; 2010 Oct; 132(39):13624-6. PubMed ID: 20843041 [TBL] [Abstract][Full Text] [Related]
3. Merging nucleophilic and hydrogen bonding catalysis: an anion binding approach to the kinetic resolution of amines. De CK; Klauber EG; Seidel D J Am Chem Soc; 2009 Dec; 131(47):17060-1. PubMed ID: 19929016 [TBL] [Abstract][Full Text] [Related]
4. Kinetic resolution of amines via dual catalysis: remarkable dependence of selectivity on the achiral cocatalyst. Mittal N; Sun DX; Seidel D Org Lett; 2012 Jun; 14(12):3084-7. PubMed ID: 22650801 [TBL] [Abstract][Full Text] [Related]
5. The DMAP-catalyzed acetylation of alcohols--a mechanistic study (DMAP = 4-(dimethylamino)pyridine). Xu S; Held I; Kempf B; Mayr H; Steglich W; Zipse H Chemistry; 2005 Aug; 11(16):4751-7. PubMed ID: 15924289 [TBL] [Abstract][Full Text] [Related]
6. A dual-catalysis/anion-binding approach to the kinetic resolution of allylic amines. Klauber EG; Mittal N; Shah TK; Seidel D Org Lett; 2011 May; 13(9):2464-7. PubMed ID: 21476518 [TBL] [Abstract][Full Text] [Related]
7. Efficient dynamic kinetic resolution of racemic secondary alcohols by a chemoenzymatic system using bifunctional iridium complexes with C-N chelate amido ligands. Sato Y; Kayaki Y; Ikariya T Chem Commun (Camb); 2012 Apr; 48(30):3635-7. PubMed ID: 22389045 [TBL] [Abstract][Full Text] [Related]
8. Catalytic enantioselective desymmetrization of meso-diamines: a dual small-molecule catalysis approach. De CK; Seidel D J Am Chem Soc; 2011 Sep; 133(37):14538-41. PubMed ID: 21863902 [TBL] [Abstract][Full Text] [Related]
9. A mechanistic investigation of the kinetic resolution of secondary aromatic alcohols using a ferrocene-based planar chiral 4-(dimethylamino)pyridine catalyst. Mesas-Sánchez L; Dinér P Chemistry; 2015 Mar; 21(14):5623-31. PubMed ID: 25677932 [TBL] [Abstract][Full Text] [Related]
10. Enantioselective organocatalytic direct Michael addition of nitroalkanes to nitroalkenes promoted by a unique bifunctional DMAP-thiourea. Rabalakos C; Wulff WD J Am Chem Soc; 2008 Oct; 130(41):13524-5. PubMed ID: 18808117 [TBL] [Abstract][Full Text] [Related]
11. A chiral bisthiourea as a chiral solvating agent for carboxylic acids in the presence of DMAP. Bian G; Fan H; Yang S; Yue H; Huang H; Zong H; Song L J Org Chem; 2013 Sep; 78(18):9137-42. PubMed ID: 24050150 [TBL] [Abstract][Full Text] [Related]
12. Palladium catalysts on alkaline-earth supports for racemization and dynamic kinetic resolution of benzylic amines. Parvulescu AN; Jacobs PA; De Vos DE Chemistry; 2007; 13(7):2034-43. PubMed ID: 17152100 [TBL] [Abstract][Full Text] [Related]
13. Unravelling the mechanism of the asymmetric hydrogenation of acetophenone by [RuX2(diphosphine)(1,2-diamine)] catalysts. Dub PA; Henson NJ; Martin RL; Gordon JC J Am Chem Soc; 2014 Mar; 136(9):3505-21. PubMed ID: 24524727 [TBL] [Abstract][Full Text] [Related]
14. Theoretical prediction of selectivity in kinetic resolution of secondary alcohols catalyzed by chiral DMAP derivatives. Larionov E; Mahesh M; Spivey AC; Wei Y; Zipse H J Am Chem Soc; 2012 Jun; 134(22):9390-9. PubMed ID: 22568686 [TBL] [Abstract][Full Text] [Related]
15. Catalytic kinetic resolution of cyclic secondary amines. Binanzer M; Hsieh SY; Bode JW J Am Chem Soc; 2011 Dec; 133(49):19698-701. PubMed ID: 22082205 [TBL] [Abstract][Full Text] [Related]
16. Iron-catalyzed imidative kinetic resolution of racemic sulfoxides. Wang J; Frings M; Bolm C Chemistry; 2014 Jan; 20(4):966-9. PubMed ID: 24375662 [TBL] [Abstract][Full Text] [Related]
17. Computational study of the aminolysis of anhydrides: effect of the catalysis to the reaction of succinic anhydride with methylamine in gas phase and nonpolar solution. Petrova T; Okovytyy S; Gorb L; Leszczynski J J Phys Chem A; 2008 Jun; 112(23):5224-35. PubMed ID: 18491887 [TBL] [Abstract][Full Text] [Related]
18. Monomer versus alcohol activation in the 4-dimethylaminopyridine-catalyzed ring-opening polymerization of lactide and lactic O-carboxylic anhydride. Bonduelle C; Martín-Vaca B; Cossío FP; Bourissou D Chemistry; 2008; 14(17):5304-12. PubMed ID: 18446916 [TBL] [Abstract][Full Text] [Related]
19. Copper ion-induced activation and asymmetric benzoylation of 1,2-diols: kinetic chiral molecular recognition. Matsumura Y; Maki T; Murakami S; Onomura O J Am Chem Soc; 2003 Feb; 125(8):2052-3. PubMed ID: 12590525 [TBL] [Abstract][Full Text] [Related]
20. Kinetic resolution of the racemic 2-hydroxyalkanoates using the enantioselective mixed-anhydride method with pivalic anhydride and a chiral acyl-transfer catalyst. Shiina I; Nakata K; Ono K; Sugimoto M; Sekiguchi A Chemistry; 2010 Jan; 16(1):167-72. PubMed ID: 19904780 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]