These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

86 related articles for article (PubMed ID: 25872050)

  • 1. Conditions for stronger field enhancement of semiconductor bowtie nanoantennas.
    Uemoto M; Ajiki H
    Opt Lett; 2015 Apr; 40(8):1695-8. PubMed ID: 25872050
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Large and well-defined Rabi splitting in a semiconductor nanogap cavity.
    Uemoto M; Ajiki H
    Opt Express; 2014 Sep; 22(19):22470-8. PubMed ID: 25321717
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Complementary bowtie aperture for localizing and enhancing optical magnetic field.
    Zhou N; Kinzel EC; Xu X
    Opt Lett; 2011 Aug; 36(15):2764-6. PubMed ID: 21808305
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Theory and method for large electric field intensity enhancement in the nanoantenna gap.
    Zhao H; Gao H; Li B
    Appl Opt; 2019 Jan; 58(3):670-676. PubMed ID: 30694253
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Large enhancement and uniform distribution of optical near field through combining periodic bowtie nanoantenna with rectangular nanoaperture array.
    Li J; Chen S; Yu P; Cheng H; Zhou W; Tian J
    Opt Lett; 2011 Oct; 36(20):4014-6. PubMed ID: 22002370
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Simultaneously tuning the electric and magnetic plasmonic response using capped bi-metallic nanoantennas.
    Roxworthy BJ; Toussaint KC
    Nanoscale; 2014 Feb; 6(4):2270-4. PubMed ID: 24407278
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Surface plasmon resonance spectroscopy of single bowtie nano-antennas using a differential reflectivity method.
    Kaniber M; Schraml K; Regler A; Bartl J; Glashagen G; Flassig F; Wierzbowski J; Finley JJ
    Sci Rep; 2016 Mar; 6():23203. PubMed ID: 27005986
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Tunable optical switching in the near-infrared spectral regime by employing plasmonic nanoantennas containing phase change materials.
    Savaliya PB; Thomas A; Dua R; Dhawan A
    Opt Express; 2017 Oct; 25(20):23755-23772. PubMed ID: 29041327
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Epitaxial Nanoflag Photonics: Semiconductor Nanoemitters Grown with Their Nanoantennas.
    Sorias O; Kelrich A; Gladstone R; Ritter D; Orenstein M
    Nano Lett; 2017 Oct; 17(10):6011-6017. PubMed ID: 28858507
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Nanowire-nanoantenna coupled system fabricated by nanomanipulation.
    Ono M; Kuramochi E; Zhang G; Sumikura H; Harada Y; Cox D; Notomi M
    Opt Express; 2016 Apr; 24(8):8647-59. PubMed ID: 27137300
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Actively tunable bistable optical Yagi-Uda nanoantenna.
    Maksymov IS; Miroshnichenko AE; Kivshar YS
    Opt Express; 2012 Apr; 20(8):8929-38. PubMed ID: 22513604
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Tuning optical responses of metallic dipole nanoantenna using graphene.
    Ren X; Sha WE; Choy WC
    Opt Express; 2013 Dec; 21(26):31824-9. PubMed ID: 24514777
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Photonic-plasmonic-coupled nanoantennas for polarization-controlled multispectral nanofocusing.
    Trevino J; Walsh GF; Pecora EF; Boriskina SV; Dal Negro L
    Opt Lett; 2013 Nov; 38(22):4861-3. PubMed ID: 24322151
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Triggering and monitoring plasmon-enhanced reactions by optical nanoantennas coupled to photocatalytic beads.
    Salmistraro M; Schwartzberg A; Bao W; Depero LE; Weber-Bargioni A; Cabrini S; Alessandri I
    Small; 2013 Oct; 9(19):3301-7. PubMed ID: 23606587
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Direct near-field optical imaging of UV bowtie nanoantennas.
    Zhou L; Gan Q; Bartoli FJ; Dierolf V
    Opt Express; 2009 Oct; 17(22):20301-6. PubMed ID: 19997256
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Notched terahertz Bowtie metamaterials with strongly enhanced near-field and narrowed resonance linewidth.
    Zhang S; Zhu X; Shi H; Wang Y; Chen Z; Duan H
    Appl Opt; 2019 Aug; 58(23):6295-6299. PubMed ID: 31503773
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The effect of electron dose on positive polymethyl methacrylate resist for nanolithography of gold bowtie nanoantennas.
    Campbell C; Casey A; Triplett G
    Heliyon; 2022 May; 8(5):e09475. PubMed ID: 35663762
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Nanofocusing in circular sector-like nanoantennas.
    Zenin VA; Pors A; Han Z; Eriksen RL; Volkov VS; Bozhevolnyi SI
    Opt Express; 2014 May; 22(9):10341-50. PubMed ID: 24921736
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Plasmonic nanoantennas on VO
    Gupta N; Savaliya PB; Dhawan A
    Opt Express; 2020 Sep; 28(19):27476-27494. PubMed ID: 32988041
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Semiconductor Bow-Tie Nanoantenna from Coupled Colloidal Quantum Dot Molecules.
    Cui J; Koley S; Panfil YE; Levi A; Waiskopf N; Remennik S; Oded M; Banin U
    Angew Chem Int Ed Engl; 2021 Jun; 60(26):14467-14472. PubMed ID: 33793047
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.