These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

83 related articles for article (PubMed ID: 25872050)

  • 21. Cavity resonances of metal-dielectric-metal nanoantennas.
    Joshi BP; Wei QH
    Opt Express; 2008 Jul; 16(14):10315-22. PubMed ID: 18607441
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Surface plasmon propagation enhancement via bowtie antenna incorporation in Au-mica block waveguides.
    Pita IA; Kumbham M; Schmidt M; Gleeson M; Ryan KM; Silien C; Liu N
    Appl Opt; 2018 Aug; 57(22):E50-E56. PubMed ID: 30117921
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Light funneling from a photonic crystal laser cavity to a nano-antenna: overcoming the diffraction limit in optical energy transfer down to the nanoscale.
    Mivelle M; Viktorovitch P; Baida FI; El Eter A; Xie Z; Vo TP; Atie E; Burr GW; Nedeljkovic D; Rauch JY; Callard S; Grosjean T
    Opt Express; 2014 Jun; 22(12):15075-87. PubMed ID: 24977600
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Modeling the optical properties of bowtie antenna generated by self-assembled ag triangular nanoprisms.
    Rosen DA; Tao AR
    ACS Appl Mater Interfaces; 2014 Mar; 6(6):4134-42. PubMed ID: 24533909
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Size and shape dependent few-cycle near-field dynamics of bowtie nanoantennas.
    Lorek E; Mårsell E; Losquin A; Miranda M; Harth A; Guo C; Svärd R; Arnold CL; L'Huiller A; Mikkelsen A; Mauritsson J
    Opt Express; 2015 Nov; 23(24):31460-71. PubMed ID: 26698771
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Optimization and maximum potential of optical antennae in near-field enhancement.
    Chen P; Liu J; Wang L; Jin K; Yin Y; Li Z
    Appl Opt; 2015 Jun; 54(18):5822-8. PubMed ID: 26193035
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Highly resonant and directional optical nanoantennas.
    Qi J; Kaiser T; Peuker R; Pertsch T; Lederer F; Rockstuhl C
    J Opt Soc Am A Opt Image Sci Vis; 2014 Feb; 31(2):388-93. PubMed ID: 24562038
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Validation of electromagnetic field enhancement in near-infrared through Sierpinski fractal nanoantennas.
    Cakmakyapan S; Cinel NA; Cakmak AO; Ozbay E
    Opt Express; 2014 Aug; 22(16):19504-12. PubMed ID: 25321033
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Realization of near-field linear nano-polarizer by asymmetric nanoaperture and bowtie nanoantenna.
    Li J; Chen S; Yu P; Cheng H; Duan X; Tian J
    Opt Express; 2013 Apr; 21(8):10342-50. PubMed ID: 23609744
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Bowtie nanoantenna integrated with indium gallium arsenide antimonide for uncooled infrared detector with enhanced sensitivity.
    Choi S; Sarabandi K
    Appl Opt; 2013 Dec; 52(35):8432-8. PubMed ID: 24513885
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Structure enhancement factor relationships in single gold nanoantennas by surface-enhanced Raman excitation spectroscopy.
    Kleinman SL; Sharma B; Blaber MG; Henry AI; Valley N; Freeman RG; Natan MJ; Schatz GC; Van Duyne RP
    J Am Chem Soc; 2013 Jan; 135(1):301-8. PubMed ID: 23214430
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Demonstration of unusual nanoantenna array modes through direct reconstruction of the near-field signal.
    Sinev IS; Voroshilov PM; Mukhin IS; Denisyuk AI; Guzhva ME; Samusev AK; Belov PA; Simovski CR
    Nanoscale; 2015 Jan; 7(2):765-70. PubMed ID: 25431164
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Photodetection with active optical antennas.
    Knight MW; Sobhani H; Nordlander P; Halas NJ
    Science; 2011 May; 332(6030):702-4. PubMed ID: 21551059
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Scattering efficiency and near field enhancement of active semiconductor plasmonic antennas at terahertz frequencies.
    Giannini V; Berrier A; Maier SA; Sánchez-Gil JA; Rivas JG
    Opt Express; 2010 Feb; 18(3):2797-807. PubMed ID: 20174108
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Optical nanoantennas for multiband surface-enhanced infrared and Raman spectroscopy.
    D'Andrea C; Bochterle J; Toma A; Huck C; Neubrech F; Messina E; Fazio B; Maragò OM; Di Fabrizio E; Lamy de La Chapelle M; Gucciardi PG; Pucci A
    ACS Nano; 2013 Apr; 7(4):3522-31. PubMed ID: 23530556
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Near-field spatial mapping of strongly interacting multiple plasmonic infrared antennas.
    Grefe SE; Leiva D; Mastel S; Dhuey SD; Cabrini S; Schuck PJ; Abate Y
    Phys Chem Chem Phys; 2013 Nov; 15(43):18944-50. PubMed ID: 24097054
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Bowtie plasmonic quantum cascade laser antenna.
    Yu N; Cubukcu E; Diehl L; Bour D; Corzine S; Zhu J; Höfler G; Crozier KB; Capasso F
    Opt Express; 2007 Oct; 15(20):13272-81. PubMed ID: 19550597
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Reconfigurable nanoantennas using electron-beam manipulation.
    Roxworthy BJ; Bhuiya AM; Yu X; Chow EK; Toussaint KC
    Nat Commun; 2014 Jul; 5():4427. PubMed ID: 25020189
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Near-field probing of slow Bloch modes on photonic crystals with a nanoantenna.
    Vo TP; Mivelle M; Callard S; Rahmani A; Baida F; Charraut D; Belarouci A; Nedeljkovic D; Seassal C; Burr GW; Grosjean T
    Opt Express; 2012 Feb; 20(4):4124-35. PubMed ID: 22418170
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Role of antenna modes and field enhancement in second harmonic generation from dipole nanoantennas.
    de Ceglia D; Vincenti MA; De Angelis C; Locatelli A; Haus JW; Scalora M
    Opt Express; 2015 Jan; 23(2):1715-29. PubMed ID: 25835927
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.