These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

244 related articles for article (PubMed ID: 25872087)

  • 1. Theory of phonon-modified quantum dot photoluminescence intensity in structured photonic reservoirs.
    Roy-Choudhury K; Hughes S
    Opt Lett; 2015 Apr; 40(8):1838-41. PubMed ID: 25872087
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Phonon-assisted photoluminescence from a semiconductor quantum dot with resonant electron and phonon subsystems.
    Baimuratov AS; Rukhlenko ID; Leonov MY; Shalkovskiy AG; Baranov AV; Fedorov AV
    Opt Express; 2014 Aug; 22(16):19707-25. PubMed ID: 25321054
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fermi's Golden Rule for Spontaneous Emission in Absorptive and Amplifying Media.
    Franke S; Ren J; Richter M; Knorr A; Hughes S
    Phys Rev Lett; 2021 Jul; 127(1):013602. PubMed ID: 34270314
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [Excitation energy and frequency of transition spectral line of electron in an asymmetry quantum dot].
    Xiao JL
    Guang Pu Xue Yu Guang Pu Fen Xi; 2009 Mar; 29(3):598-601. PubMed ID: 19455781
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Phonon-dressed Mollow triplet in the regime of cavity quantum electrodynamics: excitation-induced dephasing and nonperturbative cavity feeding effects.
    Roy C; Hughes S
    Phys Rev Lett; 2011 Jun; 106(24):247403. PubMed ID: 21770598
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Coherent quantum transport in disordered systems: A unified polaron treatment of hopping and band-like transport.
    Lee CK; Moix J; Cao J
    J Chem Phys; 2015 Apr; 142(16):164103. PubMed ID: 25933748
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cavity-QED assisted attraction between a cavity mode and an exciton mode in a planar photonic-crystal cavity.
    Tawara T; Kamada H; Tanabe T; Sogawa T; Okamoto H; Yao P; Pathak PK; Hughes S
    Opt Express; 2010 Feb; 18(3):2719-28. PubMed ID: 20174101
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Phonon-mediated coupling of InGaAs/GaAs quantum-dot excitons to photonic crystal cavities.
    Calic M; Gallo P; Felici M; Atlasov KA; Dwir B; Rudra A; Biasiol G; Sorba L; Tarel G; Savona V; Kapon E
    Phys Rev Lett; 2011 Jun; 106(22):227402. PubMed ID: 21702633
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Controlling cavity reflectivity with a single quantum dot.
    Englund D; Faraon A; Fushman I; Stoltz N; Petroff P; Vucković J
    Nature; 2007 Dec; 450(7171):857-61. PubMed ID: 18064008
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Photoluminescence of a microcavity quantum dot system in the quantum strong-coupling regime.
    Ishida N; Byrnes T; Nori F; Yamamoto Y
    Sci Rep; 2013; 3():1180. PubMed ID: 23378913
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Quantum nature of a strongly coupled single quantum dot-cavity system.
    Hennessy K; Badolato A; Winger M; Gerace D; Atatüre M; Gulde S; Fält S; Hu EL; Imamoğlu A
    Nature; 2007 Feb; 445(7130):896-9. PubMed ID: 17259971
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Non-exponential spontaneous emission dynamics for emitters in a time-dependent optical cavity.
    Thyrrestrup H; Hartsuiker A; Gérard JM; Vos WL
    Opt Express; 2013 Oct; 21(20):23130-44. PubMed ID: 24104228
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Spontaneous two-photon emission from a single quantum dot.
    Ota Y; Iwamoto S; Kumagai N; Arakawa Y
    Phys Rev Lett; 2011 Dec; 107(23):233602. PubMed ID: 22182088
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Linear and nonlinear optical spectroscopy of a strongly coupled microdisk-quantum dot system.
    Srinivasan K; Painter O
    Nature; 2007 Dec; 450(7171):862-5. PubMed ID: 18064009
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Non-Markovian dynamics of a microcavity coupled to a waveguide in photonic crystals.
    Wu MH; Lei CU; Zhang WM; Xiong HN
    Opt Express; 2010 Aug; 18(17):18407-18. PubMed ID: 20721235
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Non-markovian model of photon-assisted dephasing by electron-phonon interactions in a coupled quantum-dot-cavity system.
    Kaer P; Nielsen TR; Lodahl P; Jauho AP; Mørk J
    Phys Rev Lett; 2010 Apr; 104(15):157401. PubMed ID: 20482014
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Model of the optical emission of a driven semiconductor quantum dot: phonon-enhanced coherent scattering and off-resonant sideband narrowing.
    McCutcheon DP; Nazir A
    Phys Rev Lett; 2013 May; 110(21):217401. PubMed ID: 23745930
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Antibunching of thermal radiation by a room-temperature phonon bath: a numerically solvable model for a strongly interacting light-matter-reservoir system.
    Carmele A; Richter M; Chow WW; Knorr A
    Phys Rev Lett; 2010 Apr; 104(15):156801. PubMed ID: 20482004
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Emission polarization control in semiconductor quantum dots coupled to a photonic crystal microcavity.
    Gallardo E; Martínez LJ; Nowak AK; van der Meulen HP; Calleja JM; Tejedor C; Prieto I; Granados D; Taboada AG; García JM; Postigo PA
    Opt Express; 2010 Jun; 18(12):13301-8. PubMed ID: 20588459
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Quantum Emitters in Two-Dimensional Structured Reservoirs in the Nonperturbative Regime.
    González-Tudela A; Cirac JI
    Phys Rev Lett; 2017 Oct; 119(14):143602. PubMed ID: 29053297
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.