These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

104 related articles for article (PubMed ID: 25872091)

  • 1. Complete trapping of electromagnetic radiation using surface magnetoplasmons.
    Shen L; Wang Z; Deng X; Wu JJ; Yang TJ
    Opt Lett; 2015 Apr; 40(8):1853-6. PubMed ID: 25872091
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Stopping terahertz radiation without backscattering over a broad band.
    Shen L; Zheng X; Deng X
    Opt Express; 2015 May; 23(9):11790-8. PubMed ID: 25969270
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Backscattering-immune one-way surface magnetoplasmons at terahertz frequencies.
    Shen L; You Y; Wang Z; Deng X
    Opt Express; 2015 Jan; 23(2):950-62. PubMed ID: 25835854
    [TBL] [Abstract][Full Text] [Related]  

  • 4. One-way regular electromagnetic mode immune to backscattering.
    Deng X; Hong L; Zheng X; Shen L
    Appl Opt; 2015 May; 54(14):4608-12. PubMed ID: 25967523
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Broadband one-way propagation and rainbow trapping of terahertz radiations.
    Xu J; Xiao S; Wu C; Zhang H; Deng X; Shen L
    Opt Express; 2019 Apr; 27(8):10659-10669. PubMed ID: 31052920
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Completely stopping microwaves with extremely enhanced magnetic fields.
    Shen Q; Hong L; Deng X; Shen L
    Sci Rep; 2018 Oct; 8(1):15811. PubMed ID: 30361639
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Broadly tunable one-way terahertz plasmonic waveguide based on nonreciprocal surface magneto plasmons.
    Hu B; Wang QJ; Zhang Y
    Opt Lett; 2012 Jun; 37(11):1895-7. PubMed ID: 22660065
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Wideband isolator based on one-way surface magnetoplasmons with ultra-high isolation.
    Jiang T; Liang D; Liang H; Zou L; Zhou T; Li S; Shen L
    Sci Rep; 2024 Jul; 14(1):17474. PubMed ID: 39079954
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Large-area unidirectional surface magnetoplasmons using uniaxial μ-near-zero material.
    Shen Q; Zheng X; Zhang H; You Y; Shen L
    Opt Lett; 2021 Dec; 46(23):5978-5981. PubMed ID: 34851938
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Linear mode conversion of terahertz radiation into terahertz surface magnetoplasmons on a rippled surface of magnetized n-InSb.
    Kumar P; Kumar M; Tripathi VK
    Opt Lett; 2016 Apr; 41(7):1408-11. PubMed ID: 27192248
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Plasmonic corrugated cylinder-cone terahertz probe.
    Yao H; Zhong S
    J Opt Soc Am A Opt Image Sci Vis; 2014 Aug; 31(8):1856-60. PubMed ID: 25121543
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Slowing down terahertz waves with tunable group velocities in a broad frequency range by surface magneto plasmons.
    Hu B; Wang QJ; Zhang Y
    Opt Express; 2012 Apr; 20(9):10071-6. PubMed ID: 22535097
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Reversed Cherenkov emission of terahertz waves from an ultrashort laser pulse in a sandwich structure with nonlinear core and left-handed cladding.
    Bakunov MI; Mikhaylovskiy RV; Bodrov SB; Luk'yanchuk BS
    Opt Express; 2010 Jan; 18(2):1684-94. PubMed ID: 20173996
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Subwavelength optical trapping with a fiber-based surface plasmonic lens.
    Liu Y; Stief F; Yu M
    Opt Lett; 2013 Mar; 38(5):721-3. PubMed ID: 23455277
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Detection of deep-subwavelength dielectric layers at terahertz frequencies using semiconductor plasmonic resonators.
    Berrier A; Albella P; Poyli MA; Ulbricht R; Bonn M; Aizpurua J; Rivas JG
    Opt Express; 2012 Feb; 20(5):5052-60. PubMed ID: 22418310
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Broadband subwavelength focusing of light using a passive sink.
    Noh H; Popoff SM; Cao H
    Opt Express; 2013 Jul; 21(15):17435-46. PubMed ID: 23938613
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Subwavelength hybrid terahertz waveguides.
    Nam SH; Taylor AJ; Efimov A
    Opt Express; 2009 Dec; 17(25):22890-7. PubMed ID: 20052215
    [TBL] [Abstract][Full Text] [Related]  

  • 18. All-optical switching of the transmission of electromagnetic radiation through subwavelength apertures.
    Janke C; Rivas JG; Bolivar PH; Kurz H
    Opt Lett; 2005 Sep; 30(18):2357-9. PubMed ID: 16196318
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Design of reconfigurable metallic slits for terahertz beam modulation.
    Berry CW; Moore J; Jarrahi M
    Opt Express; 2011 Jan; 19(2):1236-45. PubMed ID: 21263665
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Tunable subwavelength focusing with dispersion-engineered metamaterials in the terahertz regime.
    Lee J; Lee K; Park H; Kang G; Yu DH; Kim K
    Opt Lett; 2010 Jul; 35(13):2254-6. PubMed ID: 20596211
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.