These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

106 related articles for article (PubMed ID: 25872216)

  • 1. Unilateral Floor Stiffness Perturbations Systematically Evoke Contralateral Leg Muscle Responses: A New Approach to Robot-Assisted Gait Therapy.
    Skidmore J; Artemiadis P
    IEEE Trans Neural Syst Rehabil Eng; 2016 Apr; 24(4):467-74. PubMed ID: 25872216
    [TBL] [Abstract][Full Text] [Related]  

  • 2. On the effect of walking surface stiffness on inter-limb coordination in human walking: toward bilaterally informed robotic gait rehabilitation.
    Skidmore J; Artemiadis P
    J Neuroeng Rehabil; 2016 Mar; 13():32. PubMed ID: 27004528
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Human-robot interaction: kinematics and muscle activity inside a powered compliant knee exoskeleton.
    Knaepen K; Beyl P; Duerinck S; Hagman F; Lefeber D; Meeusen R
    IEEE Trans Neural Syst Rehabil Eng; 2014 Nov; 22(6):1128-37. PubMed ID: 24846650
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Alterations in muscle activation patterns during robotic-assisted walking.
    Hidler JM; Wall AE
    Clin Biomech (Bristol, Avon); 2005 Feb; 20(2):184-93. PubMed ID: 15621324
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A Comprehensive Analysis of Sensorimotor Mechanisms of Inter-Leg Coordination in Gait Using the Variable Stiffness Treadmill: Physiological Insights for Improved Robot-Assisted Gait Therapy.
    Skidmore J; Artemiadis P
    IEEE Int Conf Rehabil Robot; 2019 Jun; 2019():28-33. PubMed ID: 31374602
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Sudden changes in walking surface compliance evoke contralateral EMG in a hemiparetic walker: a case study of inter-leg coordination after neurological injury.
    Skidmore J; Artemiadis P
    Annu Int Conf IEEE Eng Med Biol Soc; 2016 Aug; 2016():4682-4685. PubMed ID: 28269317
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Unilateral changes in walking surface compliance evoke dorsiflexion in paretic leg of impaired walkers.
    Skidmore J; Artemiadis P
    J Rehabil Assist Technol Eng; 2017; 4():2055668317738469. PubMed ID: 31186942
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Sensorimotor control of gait: a novel approach for the study of the interplay of visual and proprioceptive feedback.
    Frost R; Skidmore J; Santello M; Artemiadis P
    Front Hum Neurosci; 2015; 9():14. PubMed ID: 25709574
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Contributions to the understanding of gait control.
    Simonsen EB
    Dan Med J; 2014 Apr; 61(4):B4823. PubMed ID: 24814597
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Robust and efficient walking with spring-like legs.
    Rummel J; Blum Y; Seyfarth A
    Bioinspir Biomim; 2010 Dec; 5(4):046004. PubMed ID: 21079285
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Developmental changes in compensatory responses to unexpected resistance of leg lift during gait initiation.
    Woollacott M; Assaiante C
    Exp Brain Res; 2002 Jun; 144(3):385-96. PubMed ID: 12021820
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A Model-Based Analysis of Supraspinal Mechanisms of Inter-Leg Coordination in Human Gait: Toward Model-Informed Robot-Assisted Rehabilitation.
    Chambers V; Artemiadis P
    IEEE Trans Neural Syst Rehabil Eng; 2021; 29():740-749. PubMed ID: 33844630
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Exoskeleton control for lower-extremity assistance based on adaptive frequency oscillators: adaptation of muscle activation and movement frequency.
    Aguirre-Ollinger G
    Proc Inst Mech Eng H; 2015 Jan; 229(1):52-68. PubMed ID: 25655955
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Symmetry-based resistance as a novel means of lower limb rehabilitation.
    Simon AM; Brent Gillespie R; Ferris DP
    J Biomech; 2007; 40(6):1286-92. PubMed ID: 16843472
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Interlimb coordination evoked by unilateral mechanical perturbation during body-weight supported gait.
    Artemiadis PK; Krebs HI
    IEEE Int Conf Rehabil Robot; 2011; 2011():5975513. PubMed ID: 22275709
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The effect of FES of the tibial nerve on physiological activation of leg muscles during gait.
    Monaghan CC; Hermens HJ; Nene AV; Tenniglo MJ; Veltink PH
    Med Eng Phys; 2010 May; 32(4):332-8. PubMed ID: 20138561
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Triggering of balance corrections and compensatory strategies in a patient with total leg proprioceptive loss.
    Bloem BR; Allum JH; Carpenter MG; Verschuuren JJ; Honegger F
    Exp Brain Res; 2002 Jan; 142(1):91-107. PubMed ID: 11797087
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Robot-Driven Locomotor Perturbations Reveal Synergy-Mediated, Context-Dependent Feedforward and Feedback Mechanisms of Adaptation.
    Severini G; Koenig A; Adans-Dester C; Cajigas I; Cheung VCK; Bonato P
    Sci Rep; 2020 Mar; 10(1):5104. PubMed ID: 32214125
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cortical and spinal control of ankle joint muscles before and during gait initiation.
    Hiraoka K; Abe K
    Somatosens Mot Res; 2007 Sep; 24(3):127-33. PubMed ID: 17853055
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Robot-assisted walking vs overground walking in stroke patients: an evaluation of muscle activity.
    Coenen P; van Werven G; van Nunen MP; Van Dieën JH; Gerrits KH; Janssen TW
    J Rehabil Med; 2012 Apr; 44(4):331-7. PubMed ID: 22453772
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.