BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

139 related articles for article (PubMed ID: 25872222)

  • 1. Coupled Dictionary Learning for the Detail-Enhanced Synthesis of 3-D Facial Expressions.
    Liang H; Liang R; Song M; He X
    IEEE Trans Cybern; 2016 Apr; 46(4):890-901. PubMed ID: 25872222
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Expressive facial animation synthesis by learning speech coarticulation and expression spaces.
    Deng Z; Neumann U; Lewis JP; Kim TY; Bulut M; Narayanan S
    IEEE Trans Vis Comput Graph; 2006; 12(6):1523-34. PubMed ID: 17073374
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Establishing point correspondence of 3D faces via sparse facial deformable model.
    Pan G; Zhang X; Wang Y; Hu Z; Zheng X; Wu Z
    IEEE Trans Image Process; 2013 Nov; 22(11):4170-81. PubMed ID: 23807441
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Accurate landmarking of three-dimensional facial data in the presence of facial expressions and occlusions using a three-dimensional statistical facial feature model.
    Zhao X; Dellandréa E; Chen L; Kakadiaris IA
    IEEE Trans Syst Man Cybern B Cybern; 2011 Oct; 41(5):1417-28. PubMed ID: 21622076
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Extra Facial Landmark Localization via Global Shape Reconstruction.
    Tan S; Chen D; Guo C; Huang Z
    Comput Intell Neurosci; 2017; 2017():8710492. PubMed ID: 28512467
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Joint sparse learning for 3-D facial expression generation.
    Song M; Tao D; Sun S; Chen C; Bu J
    IEEE Trans Image Process; 2013 Aug; 22(8):3283-95. PubMed ID: 23661317
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Three-dimensional face reconstruction from a single image by a coupled RBF network.
    Song M; Tao D; Huang X; Chen C; Bu J
    IEEE Trans Image Process; 2012 May; 21(5):2887-97. PubMed ID: 22514131
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Intensity Estimation of Spontaneous Facial Action Units Based on Their Sparsity Properties.
    Mohammadi MR; Fatemizadeh E; Mahoor MH
    IEEE Trans Cybern; 2016 Mar; 46(3):817-26. PubMed ID: 25861093
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Geometry-driven photorealistic facial expression synthesis.
    Zhang Q; Liu Z; Guo B; Terzopoulos D; Shum HY
    IEEE Trans Vis Comput Graph; 2006; 12(1):48-60. PubMed ID: 16382607
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Robust 3D face landmark localization based on local coordinate coding.
    Song M; Tao D; Sun S; Chen C; Maybank SJ
    IEEE Trans Image Process; 2014 Dec; 23(12):5108-22. PubMed ID: 25296404
    [TBL] [Abstract][Full Text] [Related]  

  • 11. 4-D facial expression recognition by learning geometric deformations.
    Ben Amor B; Drira H; Berretti S; Daoudi M; Srivastava A
    IEEE Trans Cybern; 2014 Dec; 44(12):2443-57. PubMed ID: 25415949
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Reconstructing 3D Face Model with Associated Expression Deformation from a Single Face Image via Constructing a Low-Dimensional Expression Deformation Manifold.
    Wang SF; Lai SH
    IEEE Trans Pattern Anal Mach Intell; 2011 Oct; 33(10):2115-21. PubMed ID: 21576739
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cascaded Collaborative Regression for Robust Facial Landmark Detection Trained Using a Mixture of Synthetic and Real Images With Dynamic Weighting.
    Feng ZH; Hu G; Kittler J; Christmas W; Wu XJ
    IEEE Trans Image Process; 2015 Nov; 24(11):3425-40. PubMed ID: 26087493
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Orthogonal-blendshape-based editing system for facial motion capture data.
    Li Q; Deng Z
    IEEE Comput Graph Appl; 2008; 28(6):76-82. PubMed ID: 19004687
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Adaptive 3D Model-Based Facial Expression Synthesis and Pose Frontalization.
    Hong YJ; Choi SE; Nam GP; Choi H; Cho J; Kim IJ
    Sensors (Basel); 2020 May; 20(9):. PubMed ID: 32369980
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Semantically Disentangled Variational Autoencoder for Modeling 3D Facial Details.
    Ling J; Wang Z; Lu M; Wang Q; Qian C; Xu F
    IEEE Trans Vis Comput Graph; 2023 Aug; 29(8):3630-3641. PubMed ID: 35412983
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Recovering Joint and Individual Components in Facial Data.
    Sagonas C; Ververas E; Panagakis Y; Zafeiriou S
    IEEE Trans Pattern Anal Mach Intell; 2018 Nov; 40(11):2668-2681. PubMed ID: 29990036
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Volumetric Changes of the Mid and Lower Face with Animation and the Standardization of Three-Dimensional Facial Imaging.
    Rawlani R; Qureshi H; Rawlani V; Turin SY; Mustoe TA
    Plast Reconstr Surg; 2019 Jan; 143(1):76-85. PubMed ID: 30589778
    [TBL] [Abstract][Full Text] [Related]  

  • 19. FaceWarehouse: a 3D facial expression database for visual computing.
    Cao C; Weng Y; Zhou S; Tong Y; Zhou K
    IEEE Trans Vis Comput Graph; 2014 Mar; 20(3):413-25. PubMed ID: 24434222
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Structure-preserving sparse decomposition for facial expression analysis.
    Taheri S; Qiang Qiu ; Chellappa R
    IEEE Trans Image Process; 2014 Aug; 23(8):3590-603. PubMed ID: 24956366
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.