These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

165 related articles for article (PubMed ID: 25872474)

  • 1. Photoelectrochemical reaction for the efficient production of hydrogen and high-value-added oxidation reagents.
    Fuku K; Wang N; Miseki Y; Funaki T; Sayama K
    ChemSusChem; 2015 May; 8(9):1593-600. PubMed ID: 25872474
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Photoelectrochemical Hydrogen Peroxide Production from Water on a WO
    Fuku K; Miyase Y; Miseki Y; Funaki T; Gunji T; Sayama K
    Chem Asian J; 2017 May; 12(10):1111-1119. PubMed ID: 28332317
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Modeling, simulation, and fabrication of a fully integrated, acid-stable, scalable solar-driven water-splitting system.
    Walczak K; Chen Y; Karp C; Beeman JW; Shaner M; Spurgeon J; Sharp ID; Amashukeli X; West W; Jin J; Lewis NS; Xiang C
    ChemSusChem; 2015 Feb; 8(3):544-51. PubMed ID: 25581231
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Efficient solar water splitting by enhanced charge separation in a bismuth vanadate-silicon tandem photoelectrode.
    Abdi FF; Han L; Smets AH; Zeman M; Dam B; van de Krol R
    Nat Commun; 2013; 4():2195. PubMed ID: 23893238
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Photoelectrochemical Gas-Electrolyte-Solid Phase Boundary for Hydrogen Production From Water Vapor.
    Amano F; Shintani A; Mukohara H; Hwang YM; Tsurui K
    Front Chem; 2018; 6():598. PubMed ID: 30560121
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Overall Photoelectrochemical Water Splitting using Tandem Cell under Simulated Sunlight.
    Kim JH; Kaneko H; Minegishi T; Kubota J; Domen K; Lee JS
    ChemSusChem; 2016 Jan; 9(1):61-6. PubMed ID: 26668101
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Modification of nanocrystalline WO3 with a dicationic perylene bisimide: applications to molecular level solar water splitting.
    Ronconi F; Syrgiannis Z; Bonasera A; Prato M; Argazzi R; Caramori S; Cristino V; Bignozzi CA
    J Am Chem Soc; 2015 Apr; 137(14):4630-3. PubMed ID: 25837588
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Solar-to-hydrogen efficiency exceeding 2.5% achieved for overall water splitting with an all earth-abundant dual-photoelectrode.
    Ding C; Qin W; Wang N; Liu G; Wang Z; Yan P; Shi J; Li C
    Phys Chem Chem Phys; 2014 Aug; 16(29):15608-14. PubMed ID: 24956231
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Self-biasing photoelectrochemical cell for spontaneous overall water splitting under visible-light illumination.
    Chen Q; Li J; Li X; Huang K; Zhou B; Shangguan W
    ChemSusChem; 2013 Jul; 6(7):1276-81. PubMed ID: 23775929
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Photoelectrochemical generation of hydrogen and electricity from hydrazine hydrate using BiVO4 electrodes.
    Pilli SK; Summers K; Chidambaram D
    Phys Chem Chem Phys; 2015 Jun; 17(21):13851-9. PubMed ID: 25801229
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Sustainable hydrogen production from water using tandem dye-sensitized photoelectrochemical cells.
    Sherman BD; McMillan NK; Willinger D; Leem G
    Nano Converg; 2021 Mar; 8(1):7. PubMed ID: 33650039
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Facile Fabrication of Sandwich Structured WO3 Nanoplate Arrays for Efficient Photoelectrochemical Water Splitting.
    Feng X; Chen Y; Qin Z; Wang M; Guo L
    ACS Appl Mater Interfaces; 2016 Jul; 8(28):18089-96. PubMed ID: 27347739
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Highly Efficient Photoelectrochemical Hydrogen Generation Using Zn(x)Bi2S(3+x) Sensitized Platelike WO₃ Photoelectrodes.
    Liu C; Yang Y; Li W; Li J; Li Y; Shi Q; Chen Q
    ACS Appl Mater Interfaces; 2015 May; 7(20):10763-70. PubMed ID: 25942616
    [TBL] [Abstract][Full Text] [Related]  

  • 14. One-Step Rapid and Scalable Flame Synthesis of Efficient WO
    Chen H; Bo R; Tran-Phu T; Liu G; Tricoli A
    Chempluschem; 2018 Jul; 83(7):569-576. PubMed ID: 31950641
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Solar fuels via artificial photosynthesis.
    Gust D; Moore TA; Moore AL
    Acc Chem Res; 2009 Dec; 42(12):1890-8. PubMed ID: 19902921
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Recent Advances in Photoelectrochemical Applications of Silicon Materials for Solar-to-Chemicals Conversion.
    Zhang D; Shi J; Zi W; Wang P; Liu SF
    ChemSusChem; 2017 Nov; 10(22):4324-4341. PubMed ID: 28977741
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A molecular tandem cell for efficient solar water splitting.
    Wang D; Hu J; Sherman BD; Sheridan MV; Yan L; Dares CJ; Zhu Y; Li F; Huang Q; You W; Meyer TJ
    Proc Natl Acad Sci U S A; 2020 Jun; 117(24):13256-13260. PubMed ID: 32482883
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Unassisted photoelectrochemical water splitting exceeding 7% solar-to-hydrogen conversion efficiency using photon recycling.
    Shi X; Jeong H; Oh SJ; Ma M; Zhang K; Kwon J; Choi IT; Choi IY; Kim HK; Kim JK; Park JH
    Nat Commun; 2016 Jun; 7():11943. PubMed ID: 27324578
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Discovery of Overcoating Metal Oxides on Photoelectrode for Water Splitting by Automated Screening.
    Saito R; Miseki Y; Nini W; Sayama K
    ACS Comb Sci; 2015 Oct; 17(10):592-9. PubMed ID: 26325162
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Augmented Z scheme blueprint for efficient solar water splitting system using quaternary chalcogenide absorber material.
    Sarswat PK; Bhattacharyya D; Free ML; Misra M
    Phys Chem Chem Phys; 2016 Feb; 18(5):3788-803. PubMed ID: 26762553
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.