BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

207 related articles for article (PubMed ID: 2587257)

  • 1. Functional analysis of GC element binding and transcription in the hamster dihydrofolate reductase gene promoter.
    Swick AG; Blake MC; Kahn JW; Azizkhan JC
    Nucleic Acids Res; 1989 Nov; 17(22):9291-304. PubMed ID: 2587257
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Point mutational analysis of the hamster dihydrofolate reductase minimum promoter.
    Ciudad CJ; Morris AE; Jeng C; Chasin LA
    J Biol Chem; 1992 Feb; 267(6):3650-6. PubMed ID: 1740417
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Retinoblastoma protein associates with SP1 and activates the hamster dihydrofolate reductase promoter.
    Noé V; Alemany C; Chasin LA; Ciudad CJ
    Oncogene; 1998 Apr; 16(15):1931-8. PubMed ID: 9591776
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The binding of transcription factor Sp1 to multiple sites is required for maximal expression from the rat transforming growth factor alpha promoter.
    Chen X; Azizkhan JC; Lee DC
    Oncogene; 1992 Sep; 7(9):1805-15. PubMed ID: 1501890
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The HIP1 initiator element plays a role in determining the in vitro requirement of the dihydrofolate reductase gene promoter for the C-terminal domain of RNA polymerase II.
    Buermeyer AB; Thompson NE; Strasheim LA; Burgess RR; Farnham PJ
    Mol Cell Biol; 1992 May; 12(5):2250-9. PubMed ID: 1569952
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Nucleotide sequence and nuclease hypersensitivity of the Chinese hamster dihydrofolate reductase gene promoter region.
    Azizkhan JC; Vaughn JP; Christy RJ; Hamlin JL
    Biochemistry; 1986 Oct; 25(20):6228-36. PubMed ID: 3024702
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cell-growth regulation of the hamster dihydrofolate reductase gene promoter by transcription factor Sp1.
    Noé V; Chen C; Alemany C; Nicolás M; Caragol I; Chasin LA; Ciudad CJ
    Eur J Biochem; 1997 Oct; 249(1):13-20. PubMed ID: 9363748
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Protein-DNA interactions at the major and minor promoters of the divergently transcribed dhfr and rep3 genes during the Chinese hamster ovary cell cycle.
    Wells J; Held P; Illenye S; Heintz NH
    Mol Cell Biol; 1996 Feb; 16(2):634-47. PubMed ID: 8552092
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Transcription factor Sp1 recognizes a DNA sequence in the mouse dihydrofolate reductase promoter.
    Dynan WS; Sazer S; Tjian R; Schimke RT
    Nature; 1986 Jan 16-22; 319(6050):246-8. PubMed ID: 3945313
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Transcription factor E2F is required for efficient expression of the hamster dihydrofolate reductase gene in vitro and in vivo.
    Blake MC; Azizkhan JC
    Mol Cell Biol; 1989 Nov; 9(11):4994-5002. PubMed ID: 2601705
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Transcription initiation from the dihydrofolate reductase promoter is positioned by HIP1 binding at the initiation site.
    Means AL; Farnham PJ
    Mol Cell Biol; 1990 Feb; 10(2):653-61. PubMed ID: 2300058
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Deletion analysis of the Chinese hamster dihydrofolate reductase gene promoter.
    Ciudad CJ; Urlaub G; Chasin LA
    J Biol Chem; 1988 Nov; 263(31):16274-82. PubMed ID: 3182792
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Multiple transcription start sites, DNase I-hypersensitive sites, and an opposite-strand exon in the 5' region of the CHO dhfr gene.
    Mitchell PJ; Carothers AM; Han JH; Harding JD; Kas E; Venolia L; Chasin LA
    Mol Cell Biol; 1986 Feb; 6(2):425-40. PubMed ID: 3023846
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Analysis of the mouse Dhfr/Rep-3 major promoter region by using linker-scanning and internal deletion mutations and DNase I footprinting.
    Smith ML; Mitchell PJ; Crouse GF
    Mol Cell Biol; 1990 Nov; 10(11):6003-12. PubMed ID: 2233729
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Transcriptional initiation is controlled by upstream GC-box interactions in a TATAA-less promoter.
    Blake MC; Jambou RC; Swick AG; Kahn JW; Azizkhan JC
    Mol Cell Biol; 1990 Dec; 10(12):6632-41. PubMed ID: 2247077
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Triplex formation prevents Sp1 binding to the dihydrofolate reductase promoter.
    Gee JE; Blume S; Snyder RC; Ray R; Miller DM
    J Biol Chem; 1992 Jun; 267(16):11163-7. PubMed ID: 1597451
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Transcriptional regulation of the dihydrofolate reductase/rep-3 locus.
    Schilling LJ; Farnham PJ
    Crit Rev Eukaryot Gene Expr; 1994; 4(1):19-53. PubMed ID: 7987046
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Modulation of Sp1-dependent transcription by a cis-acting E2F element in dhfr promoter.
    Park KK; Rue SW; Lee IS; Kim HC; Lee IK; Ahn JD; Kim HS; Yu TS; Kwak JY; Heintz NH; Magae J; Chang YC
    Biochem Biophys Res Commun; 2003 Jun; 306(1):239-43. PubMed ID: 12788094
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A conserved DNA structural control element modulates transcription of a mammalian gene.
    Pierce AJ; Jambou RC; Jensen DE; Azizkhan JC
    Nucleic Acids Res; 1992 Dec; 20(24):6583-7. PubMed ID: 1480478
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Transcriptional regulation of the human manganese superoxide dismutase gene: the role of specificity protein 1 (Sp1) and activating protein-2 (AP-2).
    Xu Y; Porntadavity S; St Clair DK
    Biochem J; 2002 Mar; 362(Pt 2):401-12. PubMed ID: 11853549
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.