These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

188 related articles for article (PubMed ID: 25872865)

  • 1. Nitroarene reduction: a trusted model reaction to test nanoparticle catalysts.
    Aditya T; Pal A; Pal T
    Chem Commun (Camb); 2015 Jun; 51(46):9410-31. PubMed ID: 25872865
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A ternary Cu2O-Cu-CuO nanocomposite: a catalyst with intriguing activity.
    Sasmal AK; Dutta S; Pal T
    Dalton Trans; 2016 Feb; 45(7):3139-50. PubMed ID: 26776952
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Kinetic Analysis of 4-Nitrophenol Reduction by "Water-Soluble" Palladium Nanoparticles.
    Iben Ayad A; Luart D; Ould Dris A; Guénin E
    Nanomaterials (Basel); 2020 Jun; 10(6):. PubMed ID: 32549394
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Catalytic reduction of p-nitrophenol by using platinum nanoparticles stabilised by guar gum.
    Pandey S; Mishra SB
    Carbohydr Polym; 2014 Nov; 113():525-31. PubMed ID: 25256515
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Highly Efficient Transition Metal Nanoparticle Catalysts in Aqueous Solutions.
    Wang C; Ciganda R; Salmon L; Gregurec D; Irigoyen J; Moya S; Ruiz J; Astruc D
    Angew Chem Int Ed Engl; 2016 Feb; 55(9):3091-5. PubMed ID: 26822288
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Preparation of well-defined dendrimer encapsulated ruthenium nanoparticles and their evaluation in the reduction of 4-nitrophenol according to the Langmuir-Hinshelwood approach.
    Antonels NC; Meijboom R
    Langmuir; 2013 Nov; 29(44):13433-42. PubMed ID: 24087990
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Development plus kinetic and mechanistic studies of a prototype supported-nanoparticle heterogeneous catalyst formation system in contact with solution: Ir(1,5-COD)Cl/gamma-Al2O3 and its reduction by H2 to Ir(0)n/gamma-Al2O3.
    Mondloch JE; Wang Q; Frenkel AI; Finke RG
    J Am Chem Soc; 2010 Jul; 132(28):9701-14. PubMed ID: 20575521
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Chitosan as an active support for assembly of metal nanoparticles and application of the resultant bioconjugates in catalysis.
    Wei D; Ye Y; Jia X; Yuan C; Qian W
    Carbohydr Res; 2010 Jan; 345(1):74-81. PubMed ID: 19932470
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mussel-inspired synthesis of boron nitride nanosheet-supported gold nanoparticles and their application for catalytic reduction of 4-nitrophenol.
    Roy AK; Park SY; In I
    Nanotechnology; 2015 Mar; 26(10):105601. PubMed ID: 25687589
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Unique properties of ceria nanoparticles supported on metals: novel inverse ceria/copper catalysts for CO oxidation and the water-gas shift reaction.
    Senanayake SD; Stacchiola D; Rodriguez JA
    Acc Chem Res; 2013 Aug; 46(8):1702-11. PubMed ID: 23286528
    [TBL] [Abstract][Full Text] [Related]  

  • 11. CO oxidation catalyzed by silver nanoclusters: mechanism and effects of charge.
    Tang D; Chen Z; Hu J; Sun G; Lu S; Hu C
    Phys Chem Chem Phys; 2012 Oct; 14(37):12829-37. PubMed ID: 22886177
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Catalytic reduction of 2-nitroaniline: a review.
    Naseem K; Begum R; Farooqi ZH
    Environ Sci Pollut Res Int; 2017 Mar; 24(7):6446-6460. PubMed ID: 28054271
    [TBL] [Abstract][Full Text] [Related]  

  • 13. One-pot green synthesis of silver/iron oxide composite nanoparticles for 4-nitrophenol reduction.
    Chiou JR; Lai BH; Hsu KC; Chen DH
    J Hazard Mater; 2013 Mar; 248-249():394-400. PubMed ID: 23416483
    [TBL] [Abstract][Full Text] [Related]  

  • 14. In situ synthesis of silver supported nanoporous iron oxide microbox hybrids from metal-organic frameworks and their catalytic application in p-nitrophenol reduction.
    Jiang Z; Jiang D; Showkot Hossain AM; Qian K; Xie J
    Phys Chem Chem Phys; 2015 Jan; 17(4):2550-9. PubMed ID: 25493638
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Monitoring supported-nanocluster heterogeneous catalyst formation: product and kinetic evidence for a 2-step, nucleation and autocatalytic growth mechanism of Pt(0)n formation from H2PtCl6 on Al2O3 or TiO2.
    Mondloch JE; Yan X; Finke RG
    J Am Chem Soc; 2009 May; 131(18):6389-96. PubMed ID: 19379011
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Synthesis and characterization of nano-gold composite using Cylindrocladium floridanum and its heterogeneous catalysis in the degradation of 4-nitrophenol.
    Narayanan KB; Sakthivel N
    J Hazard Mater; 2011 May; 189(1-2):519-25. PubMed ID: 21420237
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Simple size-controlled synthesis of Au nanoparticles and their size-dependent catalytic activity.
    Suchomel P; Kvitek L; Prucek R; Panacek A; Halder A; Vajda S; Zboril R
    Sci Rep; 2018 Mar; 8(1):4589. PubMed ID: 29545580
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Eco-friendly synthesis of silver and gold nanoparticles with enhanced bactericidal activity and study of silver catalyzed reduction of 4-nitrophenol.
    Naraginti S; Sivakumar A
    Spectrochim Acta A Mol Biomol Spectrosc; 2014 Jul; 128():357-62. PubMed ID: 24681320
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Interface-confined oxide nanostructures for catalytic oxidation reactions.
    Fu Q; Yang F; Bao X
    Acc Chem Res; 2013 Aug; 46(8):1692-701. PubMed ID: 23458033
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Nanoparticle assembly following Langmuir-Hinshelwood kinetics on a Langmuir film and chain networks captured in LB films.
    Maganti L; Jash M; Nair A; Radhakrishnan TP
    Phys Chem Chem Phys; 2015 Mar; 17(11):7386-94. PubMed ID: 25700245
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.