These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

75 related articles for article (PubMed ID: 25872868)

  • 1. Amino acid uptake in erythropoiesis.
    Nathan DG
    Sci Signal; 2015 Apr; 8(372):fs9. PubMed ID: 25872868
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The mTORC1/4E-BP pathway coordinates hemoglobin production with L-leucine availability.
    Chung J; Bauer DE; Ghamari A; Nizzi CP; Deck KM; Kingsley PD; Yien YY; Huston NC; Chen C; Schultz IJ; Dalton AJ; Wittig JG; Palis J; Orkin SH; Lodish HF; Eisenstein RS; Cantor AB; Paw BH
    Sci Signal; 2015 Apr; 8(372):ra34. PubMed ID: 25872869
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Alpha-lipoic acid supplementation reduces mTORC1 signaling in skeletal muscle from high fat fed, obese Zucker rats.
    Li Z; Dungan CM; Carrier B; Rideout TC; Williamson DL
    Lipids; 2014 Dec; 49(12):1193-201. PubMed ID: 25366515
    [TBL] [Abstract][Full Text] [Related]  

  • 4. mTORC1 targets the translational repressor 4E-BP2, but not S6 kinase 1/2, to regulate neural stem cell self-renewal in vivo.
    Hartman NW; Lin TV; Zhang L; Paquelet GE; Feliciano DM; Bordey A
    Cell Rep; 2013 Oct; 5(2):433-44. PubMed ID: 24139800
    [TBL] [Abstract][Full Text] [Related]  

  • 5. mTORC1 controls mitochondrial activity and biogenesis through 4E-BP-dependent translational regulation.
    Morita M; Gravel SP; Chénard V; Sikström K; Zheng L; Alain T; Gandin V; Avizonis D; Arguello M; Zakaria C; McLaughlan S; Nouet Y; Pause A; Pollak M; Gottlieb E; Larsson O; St-Pierre J; Topisirovic I; Sonenberg N
    Cell Metab; 2013 Nov; 18(5):698-711. PubMed ID: 24206664
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Re: mTORC1 Drives HIF-1α and VEGF-A Signalling via Multiple Mechanisms Involving 4E-BP1, S6K1 and STAT3.
    Atala A
    J Urol; 2016 Feb; 195(2):524. PubMed ID: 26853037
    [No Abstract]   [Full Text] [Related]  

  • 7. Cell biology. Making sense of amino acid sensing.
    Abraham RT
    Science; 2015 Jan; 347(6218):128-9. PubMed ID: 25574008
    [No Abstract]   [Full Text] [Related]  

  • 8. Cellular signaling of amino acids towards mTORC1 activation in impaired human leucine catabolism.
    Schriever SC; Deutsch MJ; Adamski J; Roscher AA; Ensenauer R
    J Nutr Biochem; 2013 May; 24(5):824-31. PubMed ID: 22898570
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cell signalling: How mTORC1 senses leucine.
    Baumann K
    Nat Rev Mol Cell Biol; 2015 Dec; 16(12):699. PubMed ID: 26530388
    [No Abstract]   [Full Text] [Related]  

  • 10. Endotoxin disrupts the leucine-signaling pathway involving phosphorylation of mTOR, 4E-BP1, and S6K1 in skeletal muscle.
    Lang CH; Frost RA
    J Cell Physiol; 2005 Apr; 203(1):144-55. PubMed ID: 15389631
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Sestrin2 is a leucine sensor for the mTORC1 pathway.
    Wolfson RL; Chantranupong L; Saxton RA; Shen K; Scaria SM; Cantor JR; Sabatini DM
    Science; 2016 Jan; 351(6268):43-8. PubMed ID: 26449471
    [TBL] [Abstract][Full Text] [Related]  

  • 12. CELL SIGNALING. Seeing mTORC1 specificity.
    Buel GR; Blenis J
    Science; 2016 Jan; 351(6268):25-6. PubMed ID: 26721988
    [No Abstract]   [Full Text] [Related]  

  • 13. Requirement for lysosomal localization of mTOR for its activation differs between leucine and other amino acids.
    Averous J; Lambert-Langlais S; Carraro V; Gourbeyre O; Parry L; B'Chir W; Muranishi Y; Jousse C; Bruhat A; Maurin AC; Proud CG; Fafournoux P
    Cell Signal; 2014 Sep; 26(9):1918-27. PubMed ID: 24793303
    [TBL] [Abstract][Full Text] [Related]  

  • 14. S6K1 regulates hematopoietic stem cell self-renewal and leukemia maintenance.
    Ghosh J; Kobayashi M; Ramdas B; Chatterjee A; Ma P; Mali RS; Carlesso N; Liu Y; Plas DR; Chan RJ; Kapur R
    J Clin Invest; 2016 Jul; 126(7):2621-5. PubMed ID: 27294524
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Phosphatase control of 4E-BP1 phosphorylation state is central for glycolytic regulation of retinal protein synthesis.
    Gardner TW; Abcouwer SF; Losiewicz MK; Fort PE
    Am J Physiol Endocrinol Metab; 2015 Sep; 309(6):E546-56. PubMed ID: 26199279
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Normalizing translation through 4E-BP prevents mTOR-driven cortical mislamination and ameliorates aberrant neuron integration.
    Lin TV; Hsieh L; Kimura T; Malone TJ; Bordey A
    Proc Natl Acad Sci U S A; 2016 Oct; 113(40):11330-11335. PubMed ID: 27647922
    [TBL] [Abstract][Full Text] [Related]  

  • 17. FLCN Maintains the Leucine Level in Lysosome to Stimulate mTORC1.
    Wu X; Zhao L; Chen Z; Ji X; Qiao X; Jin Y; Liu W
    PLoS One; 2016; 11(6):e0157100. PubMed ID: 27280402
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Activating the translational repressor 4E-BP or reducing S6K-GSK3β activity prevents accelerated axon growth induced by hyperactive mTOR in vivo.
    Gong X; Zhang L; Huang T; Lin TV; Miyares L; Wen J; Hsieh L; Bordey A
    Hum Mol Genet; 2015 Oct; 24(20):5746-58. PubMed ID: 26220974
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Stress Relief Downstream of TOR.
    Stocker H
    Dev Cell; 2015 May; 33(3):245-6. PubMed ID: 25942621
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Prion formation correlates with activation of translation-regulating protein 4E-BP and neuronal transcription factor Elk1.
    Allard EK; Grujic M; Fisone G; Kristensson K
    Neurobiol Dis; 2013 Oct; 58():116-22. PubMed ID: 23742760
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.