These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

181 related articles for article (PubMed ID: 25873031)

  • 21. Rules of boron-nitrogen doping in defect graphene sheets: a first-principles investigation of band-gap tuning and oxygen reduction reaction catalysis capabilities.
    Sen D; Thapa R; Chattopadhyay KK
    Chemphyschem; 2014 Aug; 15(12):2542-9. PubMed ID: 24910355
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Studies of hydrogen sulfide and ammonia adsorption on P- and Si-doped graphene: density functional theory calculations.
    Comparán Padilla VE; Romero de la Cruz MT; Ávila Alvarado YE; García Díaz R; Rodríguez García CE; Hernández Cocoletzi G
    J Mol Model; 2019 Mar; 25(4):94. PubMed ID: 30859395
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Effects of shape, size, and pyrene doping on electronic properties of graphene nanoflakes.
    Kuamit T; Ratanasak M; Rungnim C; Parasuk V
    J Mol Model; 2017 Nov; 23(12):355. PubMed ID: 29177727
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Binding of Trivalent Arsenic onto the Tetrahedral Au20 and Au19Pt Clusters: Implications in Adsorption and Sensing.
    Cortés-Arriagada D; Oyarzún MP; Sanhueza L; Toro-Labbé A
    J Phys Chem A; 2015 Jul; 119(26):6909-18. PubMed ID: 26061641
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Enhancing the photocatalytic activity of TiO2 co-doping of graphene-Fe3+ ions for formaldehyde removal.
    Low W; Boonamnuayvitaya V
    J Environ Manage; 2013 Sep; 127():142-9. PubMed ID: 23694821
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Hydrogen adsorption on boron doped graphene: an ab initio study.
    Miwa RH; Martins TB; Fazzio A
    Nanotechnology; 2008 Apr; 19(15):155708. PubMed ID: 21825632
    [TBL] [Abstract][Full Text] [Related]  

  • 27. TCNE-modified graphene as an adsorbent for N
    Rastegar SF; Osouleddini N
    J Mol Model; 2017 Nov; 23(12):352. PubMed ID: 29167989
    [TBL] [Abstract][Full Text] [Related]  

  • 28. DFT study of CO adsorption on nitrogen/boron doped-graphene for sensor applications.
    Velázquez-López LF; Pacheco-Ortin SM; Mejía-Olvera R; Agacino-Valdés E
    J Mol Model; 2019 Mar; 25(4):91. PubMed ID: 30852668
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A large gap opening of graphene induced by the adsorption of CO on the Al-doped site.
    Peyghan AA; Noei M; Tabar MB
    J Mol Model; 2013 Aug; 19(8):3007-14. PubMed ID: 23564329
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Microscopic effects of the bonding configuration of nitrogen-doped graphene on its reactivity toward hydrogen peroxide reduction reaction.
    Wu P; Du P; Zhang H; Cai C
    Phys Chem Chem Phys; 2013 May; 15(18):6920-8. PubMed ID: 23549636
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Nanostructured iron(III)-copper(II) binary oxide: a novel adsorbent for enhanced arsenic removal from aqueous solutions.
    Zhang G; Ren Z; Zhang X; Chen J
    Water Res; 2013 Aug; 47(12):4022-31. PubMed ID: 23571113
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Computational investigation of N
    Vakili M; Gholizadeh R; Ghadi A; Salmasi E; Sinnokrot M
    J Mol Graph Model; 2020 Dec; 101():107752. PubMed ID: 32961478
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Ab Initio Computational Study of Chromate Molecular Anion Adsorption on the Surfaces of Pristine and B- or N-Doped Carbon Nanotubes and Graphene.
    Hizhnyi Y; Nedilko S; Borysiuk V; Shyichuk A
    Nanoscale Res Lett; 2017 Dec; 12(1):71. PubMed ID: 28120246
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Unusual Enhancement of the Adsorption Energies of Sodium and Potassium in Sulfur-Nitrogen and Silicon-Boron Codoped Graphene.
    Ullah S; Denis PA; Sato F
    ACS Omega; 2018 Nov; 3(11):15821-15828. PubMed ID: 31458230
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A facile one-pot solvothermal method to produce superparamagnetic graphene-Fe3O4 nanocomposite and its application in the removal of dye from aqueous solution.
    Wu Q; Feng C; Wang C; Wang Z
    Colloids Surf B Biointerfaces; 2013 Jan; 101():210-4. PubMed ID: 23010021
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Interaction of nucleobases with silicon doped and defective silicon doped graphene and optical properties.
    Mudedla SK; Balamurugan K; Kamaraj M; Subramanian V
    Phys Chem Chem Phys; 2016 Jan; 18(1):295-309. PubMed ID: 26607270
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Benzene carboxylic acid derivatized graphene oxide nanosheets on natural zeolites as effective adsorbents for cationic dye removal.
    Yu Y; Murthy BN; Shapter JG; Constantopoulos KT; Voelcker NH; Ellis AV
    J Hazard Mater; 2013 Sep; 260():330-8. PubMed ID: 23778259
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Toluene and acetaldehyde removal from air on to graphene-based adsorbents with microsized pores.
    Kim JM; Kim JH; Lee CY; Jerng DW; Ahn HS
    J Hazard Mater; 2018 Feb; 344():458-465. PubMed ID: 29128825
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Adsorptive selenite removal from water using iron-coated GAC adsorbents.
    Zhang N; Lin LS; Gang D
    Water Res; 2008 Aug; 42(14):3809-16. PubMed ID: 18694584
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Exploring dissociative water adsorption on isoelectronically BN doped graphene using alchemical derivatives.
    Al-Hamdani YS; Michaelides A; von Lilienfeld OA
    J Chem Phys; 2017 Oct; 147(16):164113. PubMed ID: 29096500
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.