These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

241 related articles for article (PubMed ID: 25873147)

  • 21. Bayesian modelling of multivariate quantitative traits using seemingly unrelated regressions.
    Verzilli CJ; Stallard N; Whittaker JC
    Genet Epidemiol; 2005 May; 28(4):313-25. PubMed ID: 15789447
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Genome-wide association mapping including phenotypes from relatives without genotypes.
    Wang H; Misztal I; Aguilar I; Legarra A; Muir WM
    Genet Res (Camb); 2012 Apr; 94(2):73-83. PubMed ID: 22624567
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Decomposing genomic variance using information from GWA, GWE and eQTL analysis.
    Ehsani A; Janss L; Pomp D; Sørensen P
    Anim Genet; 2016 Apr; 47(2):165-73. PubMed ID: 26678352
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Improving the computational efficiency of fully Bayes inference and assessing the effect of misspecification of hyperparameters in whole-genome prediction models.
    Yang W; Chen C; Tempelman RJ
    Genet Sel Evol; 2015 Mar; 47(1):13. PubMed ID: 25885894
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Accounting for trait architecture in genomic predictions of US Holstein cattle using a weighted realized relationship matrix.
    Tiezzi F; Maltecca C
    Genet Sel Evol; 2015 Apr; 47(1):24. PubMed ID: 25886167
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Interpretable artificial neural networks incorporating Bayesian alphabet models for genome-wide prediction and association studies.
    Zhao T; Fernando R; Cheng H
    G3 (Bethesda); 2021 Sep; 11(10):. PubMed ID: 34499126
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Comparison between genomic predictions using daughter yield deviation and conventional estimated breeding value as response variables.
    Guo G; Lund MS; Zhang Y; Su G
    J Anim Breed Genet; 2010 Dec; 127(6):423-32. PubMed ID: 21077966
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Inferring trait-specific similarity among individuals from molecular markers and phenotypes with Bayesian regression.
    Gianola D; Fernando RL; Schön CC
    Theor Popul Biol; 2020 Apr; 132():47-59. PubMed ID: 31830483
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Bayesian multiple quantitative trait loci mapping for complex traits using markers of the entire genome.
    Huang H; Eversley CD; Threadgill DW; Zou F
    Genetics; 2007 Aug; 176(4):2529-40. PubMed ID: 17483433
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Associating Multivariate Quantitative Phenotypes with Genetic Variants in Family Samples with a Novel Kernel Machine Regression Method.
    Yan Q; Weeks DE; Celedón JC; Tiwari HK; Li B; Wang X; Lin WY; Lou XY; Gao G; Chen W; Liu N
    Genetics; 2015 Dec; 201(4):1329-39. PubMed ID: 26482791
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Comparison of gene-based rare variant association mapping methods for quantitative traits in a bovine population with complex familial relationships.
    Zhang Q; Guldbrandtsen B; Calus MP; Lund MS; Sahana G
    Genet Sel Evol; 2016 Aug; 48(1):60. PubMed ID: 27534618
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Genome-wide prediction of discrete traits using Bayesian regressions and machine learning.
    González-Recio O; Forni S
    Genet Sel Evol; 2011 Feb; 43(1):7. PubMed ID: 21329522
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A Bayesian model for detection of high-order interactions among genetic variants in genome-wide association studies.
    Wang J; Joshi T; Valliyodan B; Shi H; Liang Y; Nguyen HT; Zhang J; Xu D
    BMC Genomics; 2015 Nov; 16():1011. PubMed ID: 26607428
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Improving accuracy of genomic prediction by genetic architecture based priors in a Bayesian model.
    Gao N; Li J; He J; Xiao G; Luo Y; Zhang H; Chen Z; Zhang Z
    BMC Genet; 2015 Oct; 16():120. PubMed ID: 26466667
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Novel applications of multitask learning and multiple output regression to multiple genetic trait prediction.
    He D; Kuhn D; Parida L
    Bioinformatics; 2016 Jun; 32(12):i37-i43. PubMed ID: 27307640
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Mapping quantitative trait loci for expression abundance.
    Jia Z; Xu S
    Genetics; 2007 May; 176(1):611-23. PubMed ID: 17339210
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Comparison of genomic and traditional BLUP-estimated breeding value accuracy and selection response under alternative trait and genomic parameters.
    Muir WM
    J Anim Breed Genet; 2007 Dec; 124(6):342-55. PubMed ID: 18076471
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Radial basis function regression methods for predicting quantitative traits using SNP markers.
    Long N; Gianola D; Rosa GJ; Weigel KA; Kranis A; González-Recio O
    Genet Res (Camb); 2010 Jun; 92(3):209-25. PubMed ID: 20667165
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Impact of QTL properties on the accuracy of multi-breed genomic prediction.
    Wientjes YC; Calus MP; Goddard ME; Hayes BJ
    Genet Sel Evol; 2015 May; 47(1):42. PubMed ID: 25951906
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Accuracy of genomic selection for a sib-evaluated trait using identity-by-state and identity-by-descent relationships.
    Vela-Avitúa S; Meuwissen TH; Luan T; Ødegård J
    Genet Sel Evol; 2015 Feb; 47(1):9. PubMed ID: 25888184
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.