These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

225 related articles for article (PubMed ID: 25873204)

  • 1. High-performance graphene/sulphur electrodes for flexible Li-ion batteries using the low-temperature spraying method.
    Kumar P; Wu FY; Hu LH; Ali Abbas S; Ming J; Lin CN; Fang J; Chu CW; Li LJ
    Nanoscale; 2015 May; 7(17):8093-100. PubMed ID: 25873204
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Challenges and prospects of lithium-sulfur batteries.
    Manthiram A; Fu Y; Su YS
    Acc Chem Res; 2013 May; 46(5):1125-34. PubMed ID: 23095063
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The Li-ion rechargeable battery: a perspective.
    Goodenough JB; Park KS
    J Am Chem Soc; 2013 Jan; 135(4):1167-76. PubMed ID: 23294028
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Dual-Phase Lithium Metal Anode Containing a Polysulfide-Induced Solid Electrolyte Interphase and Nanostructured Graphene Framework for Lithium-Sulfur Batteries.
    Cheng XB; Peng HJ; Huang JQ; Zhang R; Zhao CZ; Zhang Q
    ACS Nano; 2015 Jun; 9(6):6373-82. PubMed ID: 26042545
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Robust, Ultra-Tough Flexible Cathodes for High-Energy Li-S Batteries.
    Chung SH; Chang CH; Manthiram A
    Small; 2016 Feb; 12(7):939-50. PubMed ID: 26715383
    [TBL] [Abstract][Full Text] [Related]  

  • 6. High-capacity micrometer-sized Li2S particles as cathode materials for advanced rechargeable lithium-ion batteries.
    Yang Y; Zheng G; Misra S; Nelson J; Toney MF; Cui Y
    J Am Chem Soc; 2012 Sep; 134(37):15387-94. PubMed ID: 22909273
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Reduced graphene oxide coated porous carbon-sulfur nanofiber as a flexible paper electrode for lithium-sulfur batteries.
    Chu RX; Lin J; Wu CQ; Zheng J; Chen YL; Zhang J; Han RH; Zhang Y; Guo H
    Nanoscale; 2017 Jul; 9(26):9129-9138. PubMed ID: 28644506
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Green synthesis and stable li-storage performance of FeSi(2)/Si@C nanocomposite for lithium-ion batteries.
    Chen Y; Qian J; Cao Y; Yang H; Ai X
    ACS Appl Mater Interfaces; 2012 Jul; 4(7):3753-8. PubMed ID: 22757774
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Hierarchically porous carbon encapsulating sulfur as a superior cathode material for high performance lithium-sulfur batteries.
    Xu G; Ding B; Nie P; Shen L; Dou H; Zhang X
    ACS Appl Mater Interfaces; 2014 Jan; 6(1):194-9. PubMed ID: 24344876
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Long-life Li/polysulphide batteries with high sulphur loading enabled by lightweight three-dimensional nitrogen/sulphur-codoped graphene sponge.
    Zhou G; Paek E; Hwang GS; Manthiram A
    Nat Commun; 2015 Jul; 6():7760. PubMed ID: 26182892
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Binder free three-dimensional sulphur/few-layer graphene foam cathode with enhanced high-rate capability for rechargeable lithium sulphur batteries.
    Xi K; Kidambi PR; Chen R; Gao C; Peng X; Ducati C; Hofmann S; Kumar RV
    Nanoscale; 2014 Jun; 6(11):5746-53. PubMed ID: 24658177
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Li(+)-conductive polymer-embedded nano-Si particles as anode material for advanced Li-ion batteries.
    Chen Y; Zeng S; Qian J; Wang Y; Cao Y; Yang H; Ai X
    ACS Appl Mater Interfaces; 2014 Mar; 6(5):3508-12. PubMed ID: 24467155
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fabrication of functionalized polysulfide reservoirs from large graphene sheets to improve the electrochemical performance of lithium-sulfur batteries.
    Fan CY; Li HH; Zhang LL; Sun HZ; Wu XL; Xie HM; Zhang JP
    Phys Chem Chem Phys; 2015 Sep; 17(36):23481-8. PubMed ID: 26295076
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Highly Flexible Graphene/Mn3O4 Nanocomposite Membrane as Advanced Anodes for Li-Ion Batteries.
    Wang JG; Jin D; Zhou R; Li X; Liu XR; Shen C; Xie K; Li B; Kang F; Wei B
    ACS Nano; 2016 Jun; 10(6):6227-34. PubMed ID: 27172485
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Superior lithium-ion storage properties of si-based composite powders with unique Si@carbon@void@graphene configuration.
    Choi SH; Jung DS; Choi JW; Kang YC
    Chemistry; 2015 Jan; 21(5):2076-82. PubMed ID: 25450157
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Facile synthesis of novel Si nanoparticles-graphene composites as high-performance anode materials for Li-ion batteries.
    Zhou M; Pu F; Wang Z; Cai T; Chen H; Zhang H; Guan S
    Phys Chem Chem Phys; 2013 Jul; 15(27):11394-401. PubMed ID: 23740151
    [TBL] [Abstract][Full Text] [Related]  

  • 17. MnO@graphene nanopeapods derived via a one-pot hydrothermal process for a high performance anode in Li-ion batteries.
    Xiao Z; Ning G; Yu Z; Qi C; Zhao L; Li Y; Ma X; Li Y
    Nanoscale; 2019 Apr; 11(17):8270-8280. PubMed ID: 30976761
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Considering Critical Factors of Li-rich Cathode and Si Anode Materials for Practical Li-ion Cell Applications.
    Ko M; Oh P; Chae S; Cho W; Cho J
    Small; 2015 Sep; 11(33):4058-73. PubMed ID: 26108922
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Enhanced Cyclability of Li/Polysulfide Batteries by a Polymer-Modified Carbon Paper Current Collector.
    Cui Y; Fu Y
    ACS Appl Mater Interfaces; 2015 Sep; 7(36):20369-76. PubMed ID: 26305234
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mechanism of lithium storage in MoS2 and the feasibility of using Li2S/Mo nanocomposites as cathode materials for lithium-sulfur batteries.
    Fang X; Guo X; Mao Y; Hua C; Shen L; Hu Y; Wang Z; Wu F; Chen L
    Chem Asian J; 2012 May; 7(5):1013-7. PubMed ID: 22374889
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.