BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

112 related articles for article (PubMed ID: 25873227)

  • 1. Molecular modeling of bioorganometallic compounds: thermodynamic properties of molybdocene-glutathione complexes and mechanism of Peptide hydrolysis.
    Suárez D; Díaz N
    Chemphyschem; 2015 Jun; 16(8):1646-56. PubMed ID: 25873227
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A combined semiempirical and DFT computational protocol for studying bioorganometallic complexes: application to molybdocene-cysteine complexes.
    Suárez D; Díaz N; López R
    J Comput Chem; 2014 Feb; 35(4):324-34. PubMed ID: 24293240
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Interaction of molybdocene dichloride with cysteine-containing peptides: coordination, regioselective hydrolysis, and intramolecular aminolysis.
    Erxleben A
    Inorg Chem; 2005 Feb; 44(4):1082-94. PubMed ID: 15859290
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Organometallic anticancer agents: cellular uptake and cytotoxicity studies on thiol derivatives of the antitumor agent molybdocene dichloride.
    Waern JB; Dillon CT; Harding MM
    J Med Chem; 2005 Mar; 48(6):2093-9. PubMed ID: 15771451
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A (1)H NMR study of the interaction of antitumor metallocenes with glutathione.
    Mokdsi G; Harding MM
    J Inorg Biochem; 2001 Sep; 86(2-3):611-6. PubMed ID: 11566334
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Coordination chemistry of the antitumor metallocene molybdocene dichloride with biological ligands.
    Waern JB; Harding MM
    Inorg Chem; 2004 Jan; 43(1):206-13. PubMed ID: 14704069
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Understanding the hydrolysis mechanism of ethyl acetate catalyzed by an aqueous molybdocene: a computational chemistry investigation.
    Tílvez E; Cárdenas-Jirón GI; Menéndez MI; López R
    Inorg Chem; 2015 Feb; 54(4):1223-31. PubMed ID: 25634296
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Understanding regioselective cleavage in peptide hydrolysis by a palladium(II) aqua complex: a theoretical point of view.
    Yeguas V; Campomanes P; López R; Díaz N; Suárez D
    J Phys Chem B; 2010 Jul; 114(25):8525-35. PubMed ID: 20527949
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Computational study of copper(II) complexation and hydrolysis in aqueous solutions using mixed cluster/continuum models.
    Bryantsev VS; Diallo MS; Goddard WA
    J Phys Chem A; 2009 Aug; 113(34):9559-67. PubMed ID: 19655778
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Thermodynamics of the As(III)-thiol interaction: arsenite and monomethylarsenite complexes with glutathione, dihydrolipoic acid, and other thiol ligands.
    Spuches AM; Kruszyna HG; Rich AM; Wilcox DE
    Inorg Chem; 2005 Apr; 44(8):2964-72. PubMed ID: 15819584
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Combined use of platinum(II) complexes and palladium(II) complexes for selective cleavage of peptides and proteins.
    Milović NM; Dutca LM; Kostić NM
    Inorg Chem; 2003 Jun; 42(13):4036-45. PubMed ID: 12817959
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Glutathione as a prebiotic answer to α-peptide based life.
    Fiser B; Jójárt B; Szőri M; Lendvay G; Csizmadia IG; Viskolcz B
    J Phys Chem B; 2015 Mar; 119(10):3940-7. PubMed ID: 25700230
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Synthesis, characterization, cytotoxicity, and hydrolytic behavior of C2- and C1-symmetrical Ti(IV) complexes of tetradentate diamine bis(phenolato) ligands: a new class of antitumor agents.
    Peri D; Meker S; Shavit M; Tshuva EY
    Chemistry; 2009; 15(10):2403-15. PubMed ID: 19156656
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Hydrolysis of cisplatin--a first-principles metadynamics study.
    Lau JK; Ensing B
    Phys Chem Chem Phys; 2010 Sep; 12(35):10348-55. PubMed ID: 20582358
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Speciation of copper-peptide complexes in water solution using DFTB and DFT approaches: case of the [Cu(HGGG)(Py)] complex.
    Bruschi M; Bertini L; Bonačić-Koutecký V; De Gioia L; Mitrić R; Zampella G; Fantucci P
    J Phys Chem B; 2012 Jun; 116(22):6250-60. PubMed ID: 22537307
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Interaction of metal ions with biomolecular ligands: how accurate are calculated free energies associated with metal ion complexation?
    Gutten O; Beššeová I; Rulíšek L
    J Phys Chem A; 2011 Oct; 115(41):11394-402. PubMed ID: 21888367
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Metal complexation and biodegradation of EDTA and S,S-EDDS: a density functional theory study.
    Chen L; Liu T; Ma C
    J Phys Chem A; 2010 Jan; 114(1):443-54. PubMed ID: 20017479
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Modeling the tetraphenylalanine-PEG hybrid amphiphile: from DFT calculations on the peptide to molecular dynamics simulations on the conjugate.
    Zanuy D; Hamley IW; Alemán C
    J Phys Chem B; 2011 Jul; 115(28):8937-46. PubMed ID: 21671568
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Antitumour bis(cyclopentadienyl) metal complexes: titanocene and molybdocene dichloride and derivatives.
    Abeysinghe PM; Harding MM
    Dalton Trans; 2007 Aug; (32):3474-82. PubMed ID: 17680034
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mechanistic insights into metal (Pd2+, Co2+, and Zn2+)-β-cyclodextrin catalyzed peptide hydrolysis: a QM/MM approach.
    Zhang T; Zhu X; Prabhakar R
    J Phys Chem B; 2014 Apr; 118(15):4106-14. PubMed ID: 24713044
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.