These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

147 related articles for article (PubMed ID: 25873377)

  • 21. Formation of a homocitrate-free iron-molybdenum cluster on NifEN: implications for the role of homocitrate in nitrogenase assembly.
    Fay AW; Blank MA; Yoshizawa JM; Lee CC; Wiig JA; Hu Y; Hodgson KO; Hedman B; Ribbe MW
    Dalton Trans; 2010 Mar; 39(12):3124-30. PubMed ID: 20221547
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Chemical Synthesis of an Asymmetric Mimic of the Nitrogenase Active Site.
    Tanifuji K; Ohki Y
    Methods Mol Biol; 2019; 1876():229-244. PubMed ID: 30317485
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Cluster assembly in nitrogenase.
    Sickerman NS; Rettberg LA; Lee CC; Hu Y; Ribbe MW
    Essays Biochem; 2017 May; 61(2):271-279. PubMed ID: 28487403
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The Cofactors of Nitrogenases.
    Djurdjevic I; Trncik C; Rohde M; Gies J; Grunau K; Schneider F; Andrade SLA; Einsle O
    Met Ions Life Sci; 2020 Mar; 20():. PubMed ID: 32851829
    [TBL] [Abstract][Full Text] [Related]  

  • 25. A pathway for biological methane production using bacterial iron-only nitrogenase.
    Zheng Y; Harris DF; Yu Z; Fu Y; Poudel S; Ledbetter RN; Fixen KR; Yang ZY; Boyd ES; Lidstrom ME; Seefeldt LC; Harwood CS
    Nat Microbiol; 2018 Mar; 3(3):281-286. PubMed ID: 29335552
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Classifying the metal dependence of uncharacterized nitrogenases.
    McGlynn SE; Boyd ES; Peters JW; Orphan VJ
    Front Microbiol; 2012; 3():419. PubMed ID: 23440025
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Strategies Towards Capturing Nitrogenase Substrates and Intermediates via Controlled Alteration of Electron Fluxes.
    Hiller CJ; Lee CC; Stiebritz MT; Rettberg LA; Hu Y
    Chemistry; 2019 Feb; 25(10):2389-2395. PubMed ID: 30225894
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Spectroscopic Characterization of an Eight-Iron Nitrogenase Cofactor Precursor that Lacks the "9
    Jasniewski AJ; Wilcoxen J; Tanifuji K; Hedman B; Hodgson KO; Britt RD; Hu Y; Ribbe MW
    Angew Chem Int Ed Engl; 2019 Oct; 58(41):14703-14707. PubMed ID: 31411369
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Tuning Electron Flux through Nitrogenase with Methanogen Iron Protein Homologues.
    Hiller CJ; Stiebritz MT; Lee CC; Liedtke J; Hu Y
    Chemistry; 2017 Nov; 23(64):16152-16156. PubMed ID: 28984391
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Electron-transfer chemistry of the iron-molybdenum cofactor of nitrogenase: delocalized and localized reduced states of FeMoco which allow binding of carbon monoxide to iron and molybdenum.
    Pickett CJ; Vincent KA; Ibrahim SK; Gormal CA; Smith BE; Best SP
    Chemistry; 2003 Jan; 9(1):76-87. PubMed ID: 12506366
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Synthetic Analogues of Nitrogenase Metallocofactors: Challenges and Developments.
    Sickerman NS; Tanifuji K; Hu Y; Ribbe MW
    Chemistry; 2017 Sep; 23(51):12425-12432. PubMed ID: 28726330
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Reduction and Condensation of Aldehydes by the Isolated Cofactor of Nitrogenase.
    Lee CC; Hu Y; Ribbe MW
    ACS Cent Sci; 2018 Oct; 4(10):1430-1435. PubMed ID: 30410981
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Changes in the midpoint potentials of the nitrogenase metal centers as a result of iron protein-molybdenum-iron protein complex formation.
    Lanzilotta WN; Seefeldt LC
    Biochemistry; 1997 Oct; 36(42):12976-83. PubMed ID: 9335558
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Evaluation of the Catalytic Relevance of the CO-Bound States of V-Nitrogenase.
    Lee CC; Wilcoxen J; Hiller CJ; Britt RD; Hu Y
    Angew Chem Int Ed Engl; 2018 Mar; 57(13):3411-3414. PubMed ID: 29409145
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Molybdenum cofactors from molybdoenzymes and in vitro reconstitution of nitrogenase and nitrate reductase.
    Pienkos PT; Shah VK; Brill WJ
    Proc Natl Acad Sci U S A; 1977 Dec; 74(12):5468-71. PubMed ID: 146198
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Nitrogenase reduction of carbon-containing compounds.
    Seefeldt LC; Yang ZY; Duval S; Dean DR
    Biochim Biophys Acta; 2013; 1827(8-9):1102-11. PubMed ID: 23597875
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Reduction of Substrates by Nitrogenases.
    Seefeldt LC; Yang ZY; Lukoyanov DA; Harris DF; Dean DR; Raugei S; Hoffman BM
    Chem Rev; 2020 Jun; 120(12):5082-5106. PubMed ID: 32176472
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Two ligand-binding sites in CO-reducing V nitrogenase reveal a general mechanistic principle.
    Rohde M; Laun K; Zebger I; Stripp ST; Einsle O
    Sci Adv; 2021 May; 7(22):. PubMed ID: 34049880
    [TBL] [Abstract][Full Text] [Related]  

  • 39. CO2 Reduction Catalyzed by Nitrogenase: Pathways to Formate, Carbon Monoxide, and Methane.
    Khadka N; Dean DR; Smith D; Hoffman BM; Raugei S; Seefeldt LC
    Inorg Chem; 2016 Sep; 55(17):8321-30. PubMed ID: 27500789
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Mechanism of N
    Harris DF; Lukoyanov DA; Shaw S; Compton P; Tokmina-Lukaszewska M; Bothner B; Kelleher N; Dean DR; Hoffman BM; Seefeldt LC
    Biochemistry; 2018 Feb; 57(5):701-710. PubMed ID: 29283553
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.