These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

258 related articles for article (PubMed ID: 25873378)

  • 1. Phylogenomic analysis and predicted physiological role of the proton-translocating NADH:quinone oxidoreductase (complex I) across bacteria.
    Spero MA; Aylward FO; Currie CR; Donohue TJ
    mBio; 2015 Apr; 6(2):. PubMed ID: 25873378
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Different Functions of Phylogenetically Distinct Bacterial Complex I Isozymes.
    Spero MA; Brickner JR; Mollet JT; Pisithkul T; Amador-Noguez D; Donohue TJ
    J Bacteriol; 2016 Apr; 198(8):1268-80. PubMed ID: 26833419
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The respiratory complex I of bacteria, archaea and eukarya and its module common with membrane-bound multisubunit hydrogenases.
    Friedrich T; Scheide D
    FEBS Lett; 2000 Aug; 479(1-2):1-5. PubMed ID: 10940377
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Genetic and Biochemical Analysis of Anaerobic Respiration in Bacteroides fragilis and Its Importance
    Ito T; Gallegos R; Matano LM; Butler NL; Hantman N; Kaili M; Coyne MJ; Comstock LE; Malamy MH; Barquera B
    mBio; 2020 Feb; 11(1):. PubMed ID: 32019804
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The origin of cluster N2 of the energy-transducing NADH-quinone oxidoreductase: comparisons of phylogenetically related enzymes.
    Yano T; Ohnishi T
    J Bioenerg Biomembr; 2001 Jun; 33(3):213-22. PubMed ID: 11695831
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The three families of respiratory NADH dehydrogenases.
    Kerscher S; Dröse S; Zickermann V; Brandt U
    Results Probl Cell Differ; 2008; 45():185-222. PubMed ID: 17514372
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The role of geochemistry and energetics in the evolution of modern respiratory complexes from a proton-reducing ancestor.
    Schut GJ; Zadvornyy O; Wu CH; Peters JW; Boyd ES; Adams MW
    Biochim Biophys Acta; 2016 Jul; 1857(7):958-70. PubMed ID: 26808919
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Convergent evolution of unusual complex I homologs with increased proton pumping capacity: energetic and ecological implications.
    Chadwick GL; Hemp J; Fischer WW; Orphan VJ
    ISME J; 2018 Nov; 12(11):2668-2680. PubMed ID: 29991762
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Single eubacterial origin of eukaryotic sulfide:quinone oxidoreductase, a mitochondrial enzyme conserved from the early evolution of eukaryotes during anoxic and sulfidic times.
    Theissen U; Hoffmeister M; Grieshaber M; Martin W
    Mol Biol Evol; 2003 Sep; 20(9):1564-74. PubMed ID: 12832624
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Origin and evolution of the sodium -pumping NADH: ubiquinone oxidoreductase.
    Reyes-Prieto A; Barquera B; Juárez O
    PLoS One; 2014; 9(5):e96696. PubMed ID: 24809444
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Modular evolution of the respiratory NADH:ubiquinone oxidoreductase and the origin of its modules.
    Friedrich T; Weiss H
    J Theor Biol; 1997 Aug; 187(4):529-40. PubMed ID: 9299297
    [TBL] [Abstract][Full Text] [Related]  

  • 12. NqrM (DUF539) Protein Is Required for Maturation of Bacterial Na+-Translocating NADH:Quinone Oxidoreductase.
    Kostyrko VA; Bertsova YV; Serebryakova MV; Baykov AA; Bogachev AV
    J Bacteriol; 2015 Dec; 198(4):655-63. PubMed ID: 26644436
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The 'antiporter module' of respiratory chain complex I includes the MrpC/NuoK subunit -- a revision of the modular evolution scheme.
    Mathiesen C; Hägerhäll C
    FEBS Lett; 2003 Aug; 549(1-3):7-13. PubMed ID: 12914915
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Electron Transfer to Nitrogenase in Different Genomic and Metabolic Backgrounds.
    Poudel S; Colman DR; Fixen KR; Ledbetter RN; Zheng Y; Pence N; Seefeldt LC; Peters JW; Harwood CS; Boyd ES
    J Bacteriol; 2018 May; 200(10):. PubMed ID: 29483165
    [TBL] [Abstract][Full Text] [Related]  

  • 15. NarJ subfamily system specific chaperone diversity and evolution is directed by respiratory enzyme associations.
    Bay DC; Chan CS; Turner RJ
    BMC Evol Biol; 2015 Jun; 15():110. PubMed ID: 26067063
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Parallel Evolution of Genome Streamlining and Cellular Bioenergetics across the Marine Radiation of a Bacterial Phylum.
    Getz EW; Tithi SS; Zhang L; Aylward FO
    mBio; 2018 Sep; 9(5):. PubMed ID: 30228235
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Type II NADH:quinone oxidoreductase family: phylogenetic distribution, structural diversity and evolutionary divergences.
    Marreiros BC; Sena FV; Sousa FM; Batista AP; Pereira MM
    Environ Microbiol; 2016 Dec; 18(12):4697-4709. PubMed ID: 27105286
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Respiratory Membrane Protein Complexes Convert Chemical Energy.
    Muras V; Toulouse C; Fritz G; Steuber J
    Subcell Biochem; 2019; 92():301-335. PubMed ID: 31214991
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The organisation of proton motive and non-proton motive redox loops in prokaryotic respiratory systems.
    Simon J; van Spanning RJ; Richardson DJ
    Biochim Biophys Acta; 2008 Dec; 1777(12):1480-90. PubMed ID: 18930017
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Metabolic Reprogramming of Vibrio cholerae Impaired in Respiratory NADH Oxidation Is Accompanied by Increased Copper Sensitivity.
    Toulouse C; Metesch K; Pfannstiel J; Steuber J
    J Bacteriol; 2018 Aug; 200(15):. PubMed ID: 29735761
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.