BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

103 related articles for article (PubMed ID: 25873388)

  • 1. Site-specific fluorescence spectrum detection and characterization of hASIC1a channels upon toxin mambalgin-1 binding in live mammalian cells.
    Wen M; Guo X; Sun P; Xiao L; Li J; Xiong Y; Bao J; Xue T; Zhang L; Tian C
    Chem Commun (Camb); 2015 May; 51(38):8153-6. PubMed ID: 25873388
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Binding site and inhibitory mechanism of the mambalgin-2 pain-relieving peptide on acid-sensing ion channel 1a.
    Salinas M; Besson T; Delettre Q; Diochot S; Boulakirba S; Douguet D; Lingueglia E
    J Biol Chem; 2014 May; 289(19):13363-73. PubMed ID: 24695733
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Chemical synthesis, 3D structure, and ASIC binding site of the toxin mambalgin-2.
    Schroeder CI; Rash LD; Vila-Farrés X; Rosengren KJ; Mobli M; King GF; Alewood PF; Craik DJ; Durek T
    Angew Chem Int Ed Engl; 2014 Jan; 53(4):1017-20. PubMed ID: 24323786
    [TBL] [Abstract][Full Text] [Related]  

  • 4. One-pot hydrazide-based native chemical ligation for efficient chemical synthesis and structure determination of toxin Mambalgin-1.
    Pan M; He Y; Wen M; Wu F; Sun D; Li S; Zhang L; Li Y; Tian C
    Chem Commun (Camb); 2014 Jun; 50(44):5837-9. PubMed ID: 24619065
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mambalgin-1 pain-relieving peptide locks the hinge between α4 and α5 helices to inhibit rat acid-sensing ion channel 1a.
    Salinas M; Kessler P; Douguet D; Sarraf D; Tonali N; Thai R; Servent D; Lingueglia E
    Neuropharmacology; 2021 Mar; 185():108453. PubMed ID: 33450275
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Structural insights into human acid-sensing ion channel 1a inhibition by snake toxin mambalgin1.
    Sun D; Liu S; Li S; Zhang M; Yang F; Wen M; Shi P; Wang T; Pan M; Chang S; Zhang X; Zhang L; Tian C; Liu L
    Elife; 2020 Sep; 9():. PubMed ID: 32915133
    [TBL] [Abstract][Full Text] [Related]  

  • 7. High-throughput characterization of photocrosslinker-bearing ion channel variants to map residues critical for function and pharmacology.
    Braun N; Friis S; Ihling C; Sinz A; Andersen J; Pless SA
    PLoS Biol; 2021 Sep; 19(9):e3001321. PubMed ID: 34491979
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Revealing molecular determinants governing mambalgin-3 pharmacology at acid-sensing ion channel 1 variants.
    Cristofori-Armstrong B; Budusan E; Smith JJ; Reynaud S; Voll K; Chassagnon IR; Durek T; Rash LD
    Cell Mol Life Sci; 2024 Jun; 81(1):266. PubMed ID: 38880807
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mambalgin-1 Pain-relieving Peptide, Stepwise Solid-phase Synthesis, Crystal Structure, and Functional Domain for Acid-sensing Ion Channel 1a Inhibition.
    Mourier G; Salinas M; Kessler P; Stura EA; Leblanc M; Tepshi L; Besson T; Diochot S; Baron A; Douguet D; Lingueglia E; Servent D
    J Biol Chem; 2016 Feb; 291(6):2616-29. PubMed ID: 26680001
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Total synthesis of mambalgin-1/2/3 by two-segment hydrazide-based native chemical ligation.
    Lan H; Wu K; Zheng Y; Pan M; Huang YC; Gao S; Zheng QY; Zheng JS; Li YM; Xiao B; Liu L
    J Pept Sci; 2016 May; 22(5):320-6. PubMed ID: 26991634
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A novel method for screening peptides that bind to proteins by using multiple fluorescent amino acids as fluorescent tags.
    Kitamatsu M; Futami M; Sisido M
    Chem Commun (Camb); 2010 Feb; 46(5):761-3. PubMed ID: 20087512
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Enantiospecific synthesis of genetically encodable fluorescent unnatural amino acid L-3-(6-acetylnaphthalen-2-ylamino)-2-aminopropanoic acid.
    Xiang Z; Wang L
    J Org Chem; 2011 Aug; 76(15):6367-71. PubMed ID: 21732687
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Detection of Na
    Shandell MA; Quejada JR; Yazawa M; Cornish VW; Kass RS
    Biophys J; 2019 Oct; 117(7):1352-1363. PubMed ID: 31521331
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fluorescence Modulation of Green Fluorescent Protein Using Fluorinated Unnatural Amino Acids.
    Villa JK; Tran HA; Vipani M; Gianturco S; Bhasin K; Russell BL; Harbron EJ; Young DD
    Molecules; 2017 Jul; 22(7):. PubMed ID: 28714902
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Position-specific incorporation of a highly photodurable and blue-laser excitable fluorescent amino acid into proteins for fluorescence sensing.
    Hamada H; Kameshima N; Szymańska A; Wegner K; Lankiewicz Ł; Shinohara H; Taki M; Sisido M
    Bioorg Med Chem; 2005 May; 13(10):3379-84. PubMed ID: 15848750
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A non-natural amino acid for efficient incorporation into proteins as a sensitive fluorescent probe.
    Taki M; Hohsaka T; Murakami H; Taira K; Sisido M
    FEBS Lett; 2001 Oct; 507(1):35-8. PubMed ID: 11682055
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A rational approach to fluorescence "turn-on" sensing of alpha-amino-carboxylates.
    Ryu D; Park E; Kim DS; Yan S; Lee JY; Chang BY; Ahn KH
    J Am Chem Soc; 2008 Feb; 130(8):2394-5. PubMed ID: 18237173
    [No Abstract]   [Full Text] [Related]  

  • 18. Structure and analysis of nanobody binding to the human ASIC1a ion channel.
    Wu Y; Chen Z; Sigworth FJ; Canessa CM
    Elife; 2021 Jul; 10():. PubMed ID: 34319232
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A very short route to enantiomerically pure coumarin-bearing fluorescent amino acids.
    Brun MP; Bischoff L; Garbay C
    Angew Chem Int Ed Engl; 2004 Jun; 43(26):3432-6. PubMed ID: 15221831
    [No Abstract]   [Full Text] [Related]  

  • 20. Phospholyl(borane) Amino Acids and Peptides: Stereoselective Synthesis and Fluorescent Properties with Large Stokes Shift.
    Arribat M; Rémond E; Clément S; Lee AV; Cavelier F
    J Am Chem Soc; 2018 Jan; 140(3):1028-1034. PubMed ID: 29262677
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.