These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

188 related articles for article (PubMed ID: 25873568)

  • 1. Electron-phonon interaction and thermal boundary resistance at the interfaces of Ge2Sb2Te5 with metals and dielectrics.
    Campi D; Baldi E; Graceffa G; Sosso GC; Bernasconi M
    J Phys Condens Matter; 2015 May; 27(17):175009. PubMed ID: 25873568
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Role of the electron-phonon coupling in tuning the thermal boundary conductance at metal-dielectric interfaces by inserting ultrathin metal interlayers.
    Oommen SM; Pisana S
    J Phys Condens Matter; 2021 Feb; 33(8):085702. PubMed ID: 33207329
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Influence of the electron-phonon interfacial conductance on the thermal transport at metal/dielectric interfaces.
    Lombard J; Detcheverry F; Merabia S
    J Phys Condens Matter; 2015 Jan; 27(1):015007. PubMed ID: 25425559
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Anisotropic Thermal Boundary Resistance across 2D Black Phosphorus: Experiment and Atomistic Modeling of Interfacial Energy Transport.
    Li M; Kang JS; Nguyen HD; Wu H; Aoki T; Hu Y
    Adv Mater; 2019 Aug; 31(33):e1901021. PubMed ID: 31231881
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Achieving Huge Thermal Conductance of Metallic Nitride on Graphene Through Enhanced Elastic and Inelastic Phonon Transmission.
    Zheng W; Huang B; Li H; Koh YK
    ACS Appl Mater Interfaces; 2018 Oct; 10(41):35487-35494. PubMed ID: 30226044
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Role of vibrational properties and electron-phonon coupling on thermal transport across metal-dielectric interfaces with ultrathin metallic interlayers.
    Oommen SM; Fallarino L; Heinze J; Hellwig O; Pisana S
    J Phys Condens Matter; 2022 Sep; 34(46):. PubMed ID: 36108621
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Corrigendum: Role of the electron-phonon coupling in tuning the thermal boundary conductance at metal-dielectric interfaces by inserting ultrathin metal interlayers (2021
    Oommen SM; Pisana S
    J Phys Condens Matter; 2021 Jun; 33(30):. PubMed ID: 33477117
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Role of direct electron-phonon coupling across metal-semiconductor interfaces in thermal transport via molecular dynamics.
    Lin KH; Strachan A
    J Chem Phys; 2015 Jul; 143(3):034703. PubMed ID: 26203038
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Phosphorene grain boundary effect on phonon transport and phononic applications.
    Wang X; Wang Q; Liu X; Huang Z; Liu X
    Nanotechnology; 2022 Apr; 33(26):. PubMed ID: 35325884
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Thermal Conduction across Metal-Dielectric Sidewall Interfaces.
    Park W; Kodama T; Park J; Cho J; Sood A; Barako MT; Asheghi M; Goodson KE
    ACS Appl Mater Interfaces; 2017 Sep; 9(35):30100-30106. PubMed ID: 28786284
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A comparative study of interfacial thermal conductance between metal and semiconductor.
    Wu K; Zhang L; Wang D; Li F; Zhang P; Sang L; Liao M; Tang K; Ye J; Gu S
    Sci Rep; 2022 Nov; 12(1):19907. PubMed ID: 36402811
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Optic phonons and anisotropic thermal conductivity in hexagonal Ge
    Mukhopadhyay S; Lindsay L; Singh DJ
    Sci Rep; 2016 Nov; 6():37076. PubMed ID: 27848985
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Application of elastic wave dispersion relations to estimate thermal properties of nanoscale wires and tubes of varying wall thickness and diameter.
    Bifano MF; Kaul PB; Prakash V
    Nanotechnology; 2010 Jun; 21(23):235704. PubMed ID: 20472943
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Theoretical analysis of thermal boundary conductance of MoS
    Ong ZY; Cai Y; Zhang G; Zhang YW
    Nanotechnology; 2020 Dec; ():. PubMed ID: 33296879
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Thermal transport across metal–insulator interface via electron–phonon interaction.
    Zhang L; Lü JT; Wang JS; Li B
    J Phys Condens Matter; 2013 Nov; 25(44):445801. PubMed ID: 24131959
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Low Thermal Boundary Resistance Interfaces for GaN-on-Diamond Devices.
    Yates L; Anderson J; Gu X; Lee C; Bai T; Mecklenburg M; Aoki T; Goorsky MS; Kuball M; Piner EL; Graham S
    ACS Appl Mater Interfaces; 2018 Jul; 10(28):24302-24309. PubMed ID: 29939717
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Significant reduction of lattice thermal conductivity by the electron-phonon interaction in silicon with high carrier concentrations: a first-principles study.
    Liao B; Qiu B; Zhou J; Huberman S; Esfarjani K; Chen G
    Phys Rev Lett; 2015 Mar; 114(11):115901. PubMed ID: 25839292
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of Thermal Boundary Resistance between the Interconnect Metal and Dielectric Interlayer on Temperature Increase of Interconnects in Deeply Scaled VLSI.
    Zhan T; Oda K; Ma S; Tomita M; Jin Z; Takezawa H; Mesaki K; Wu YJ; Xu Y; Matsukawa T; Matsuki T; Watanabe T
    ACS Appl Mater Interfaces; 2020 May; 12(19):22347-22356. PubMed ID: 32315529
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Thermal Boundary Conductance Across Heteroepitaxial ZnO/GaN Interfaces: Assessment of the Phonon Gas Model.
    Gaskins JT; Kotsonis G; Giri A; Ju S; Rohskopf A; Wang Y; Bai T; Sachet E; Shelton CT; Liu Z; Cheng Z; Foley BM; Graham S; Luo T; Henry A; Goorsky MS; Shiomi J; Maria JP; Hopkins PE
    Nano Lett; 2018 Dec; 18(12):7469-7477. PubMed ID: 30412411
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Kapitza resistance in the lattice Boltzmann-Peierls-Callaway equation for multiphase phonon gases.
    Lee J; Roy AK; Farmer BL
    Phys Rev E Stat Nonlin Soft Matter Phys; 2011 May; 83(5 Pt 2):056706. PubMed ID: 21728692
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.