BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

179 related articles for article (PubMed ID: 25873590)

  • 1. The dJ/dS Ratio Test Reveals Hundreds of Novel Putative Cancer Drivers.
    Chen H; Xing K; He X
    Mol Biol Evol; 2015 Aug; 32(8):2181-5. PubMed ID: 25873590
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Evolutionarily emerged G tracts between the polypyrimidine tract and 3' AG are splicing silencers enriched in genes involved in cancer.
    Sohail M; Cao W; Mahmood N; Myschyshyn M; Hong SP; Xie J
    BMC Genomics; 2014 Dec; 15(1):1143. PubMed ID: 25523808
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cancer-mutation network and the number and specificity of driver mutations.
    Iranzo J; Martincorena I; Koonin EV
    Proc Natl Acad Sci U S A; 2018 Jun; 115(26):E6010-E6019. PubMed ID: 29895694
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Discovery of driver non-coding splice-site-creating mutations in cancer.
    Cao S; Zhou DC; Oh C; Jayasinghe RG; Zhao Y; Yoon CJ; Wyczalkowski MA; Bailey MH; Tsou T; Gao Q; Malone A; Reynolds S; Shmulevich I; Wendl MC; Chen F; Ding L
    Nat Commun; 2020 Nov; 11(1):5573. PubMed ID: 33149122
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Frequent mutations in acetylation and ubiquitination sites suggest novel driver mechanisms of cancer.
    Narayan S; Bader GD; Reimand J
    Genome Med; 2016 May; 8(1):55. PubMed ID: 27175787
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Altered interactions between unicellular and multicellular genes drive hallmarks of transformation in a diverse range of solid tumors.
    Trigos AS; Pearson RB; Papenfuss AT; Goode DL
    Proc Natl Acad Sci U S A; 2017 Jun; 114(24):6406-6411. PubMed ID: 28484005
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The U1 spliceosomal RNA is recurrently mutated in multiple cancers.
    Shuai S; Suzuki H; Diaz-Navarro A; Nadeu F; Kumar SA; Gutierrez-Fernandez A; Delgado J; Pinyol M; López-Otín C; Puente XS; Taylor MD; Campo E; Stein LD
    Nature; 2019 Oct; 574(7780):712-716. PubMed ID: 31597163
    [TBL] [Abstract][Full Text] [Related]  

  • 8. LNDriver: identifying driver genes by integrating mutation and expression data based on gene-gene interaction network.
    Wei PJ; Zhang D; Xia J; Zheng CH
    BMC Bioinformatics; 2016 Dec; 17(Suppl 17):467. PubMed ID: 28155630
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Network perturbation by recurrent regulatory variants in cancer.
    Jang K; Kim K; Cho A; Lee I; Choi JK
    PLoS Comput Biol; 2017 Mar; 13(3):e1005449. PubMed ID: 28333928
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Improving existing analysis pipeline to identify and analyze cancer driver genes using multi-omics data.
    Nguyen QH; Le DH
    Sci Rep; 2020 Nov; 10(1):20521. PubMed ID: 33239644
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Massive computational identification of somatic variants in exonic splicing enhancers using The Cancer Genome Atlas.
    Tanimoto K; Muramatsu T; Inazawa J
    Cancer Med; 2019 Dec; 8(17):7372-7384. PubMed ID: 31631560
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Integrative network-based approach identifies key genetic elements in breast invasive carcinoma.
    Hamed M; Spaniol C; Zapp A; Helms V
    BMC Genomics; 2015; 16 Suppl 5(Suppl 5):S2. PubMed ID: 26040466
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Systematic deciphering of cancer genome networks.
    Fendler B; Atwal G
    Yale J Biol Med; 2012 Sep; 85(3):339-45. PubMed ID: 23012582
    [TBL] [Abstract][Full Text] [Related]  

  • 14. DJ-1 as a Therapeutic Target Against Cancer.
    Cao J; Chen X; Ying M; He Q; Yang B
    Adv Exp Med Biol; 2017; 1037():203-222. PubMed ID: 29147911
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Integrated analysis of recurrent properties of cancer genes to identify novel drivers.
    D'Antonio M; Ciccarelli FD
    Genome Biol; 2013 May; 14(5):R52. PubMed ID: 23718799
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Depletion of somatic mutations in splicing-associated sequences in cancer genomes.
    Hurst LD; Batada NN
    Genome Biol; 2017 Nov; 18(1):213. PubMed ID: 29115978
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cancer driver gene discovery through an integrative genomics approach in a non-parametric Bayesian framework.
    Yang H; Wei Q; Zhong X; Yang H; Li B
    Bioinformatics; 2017 Feb; 33(4):483-490. PubMed ID: 27797769
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A comprehensive characterization of
    Shiraishi Y; Kataoka K; Chiba K; Okada A; Kogure Y; Tanaka H; Ogawa S; Miyano S
    Genome Res; 2018 Aug; 28(8):1111-1125. PubMed ID: 30012835
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A pan-cancer analysis of transcriptome changes associated with somatic mutations in U2AF1 reveals commonly altered splicing events.
    Brooks AN; Choi PS; de Waal L; Sharifnia T; Imielinski M; Saksena G; Pedamallu CS; Sivachenko A; Rosenberg M; Chmielecki J; Lawrence MS; DeLuca DS; Getz G; Meyerson M
    PLoS One; 2014; 9(1):e87361. PubMed ID: 24498085
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Single base-pair substitutions in exon-intron junctions of human genes: nature, distribution, and consequences for mRNA splicing.
    Krawczak M; Thomas NS; Hundrieser B; Mort M; Wittig M; Hampe J; Cooper DN
    Hum Mutat; 2007 Feb; 28(2):150-8. PubMed ID: 17001642
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.