BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

179 related articles for article (PubMed ID: 25873590)

  • 21. Systematic identification of genes with a cancer-testis expression pattern in 19 cancer types.
    Wang C; Gu Y; Zhang K; Xie K; Zhu M; Dai N; Jiang Y; Guo X; Liu M; Dai J; Wu L; Jin G; Ma H; Jiang T; Yin R; Xia Y; Liu L; Wang S; Shen B; Huo R; Wang Q; Xu L; Yang L; Huang X; Shen H; Sha J; Hu Z
    Nat Commun; 2016 Jan; 7():10499. PubMed ID: 26813108
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Identification of cancer fusion drivers using network fusion centrality.
    Wu CC; Kannan K; Lin S; Yen L; Milosavljevic A
    Bioinformatics; 2013 May; 29(9):1174-81. PubMed ID: 23505294
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Personalized characterization of diseases using sample-specific networks.
    Liu X; Wang Y; Ji H; Aihara K; Chen L
    Nucleic Acids Res; 2016 Dec; 44(22):e164. PubMed ID: 27596597
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The Discovery of Mutated Driver Pathways in Cancer: Models and Algorithms.
    Zhang J; Zhang S
    IEEE/ACM Trans Comput Biol Bioinform; 2018; 15(3):988-998. PubMed ID: 28113329
    [TBL] [Abstract][Full Text] [Related]  

  • 25. A network-based analysis of colon cancer splicing changes reveals a tumorigenesis-favoring regulatory pathway emanating from ELK1.
    Hollander D; Donyo M; Atias N; Mekahel K; Melamed Z; Yannai S; Lev-Maor G; Shilo A; Schwartz S; Barshack I; Sharan R; Ast G
    Genome Res; 2016 Apr; 26(4):541-53. PubMed ID: 26860615
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Identification of candidate cancer drivers by integrative Epi-DNA and Gene Expression (iEDGE) data analysis.
    Li A; Chapuy B; Varelas X; Sebastiani P; Monti S
    Sci Rep; 2019 Nov; 9(1):16904. PubMed ID: 31729402
    [TBL] [Abstract][Full Text] [Related]  

  • 27. CBNA: A control theory based method for identifying coding and non-coding cancer drivers.
    Pham VVH; Liu L; Bracken CP; Goodall GJ; Long Q; Li J; Le TD
    PLoS Comput Biol; 2019 Dec; 15(12):e1007538. PubMed ID: 31790386
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Compensatory relationship between splice sites and exonic splicing signals depending on the length of vertebrate introns.
    Dewey CN; Rogozin IB; Koonin EV
    BMC Genomics; 2006 Dec; 7():311. PubMed ID: 17156453
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Why Selection Might Be Stronger When Populations Are Small: Intron Size and Density Predict within and between-Species Usage of Exonic Splice Associated cis-Motifs.
    Wu X; Hurst LD
    Mol Biol Evol; 2015 Jul; 32(7):1847-61. PubMed ID: 25771198
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Computational analysis of splicing errors and mutations in human transcripts.
    Kurmangaliyev YZ; Gelfand MS
    BMC Genomics; 2008 Jan; 9():13. PubMed ID: 18194514
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Biased codon usage near intron-exon junctions: selection on splicing enhancers, splice-site recognition or something else?
    Chamary JV; Hurst LD
    Trends Genet; 2005 May; 21(5):256-9. PubMed ID: 15851058
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Mutational landscape of RNA-binding proteins in human cancers.
    Neelamraju Y; Gonzalez-Perez A; Bhat-Nakshatri P; Nakshatri H; Janga SC
    RNA Biol; 2018 Jan; 15(1):115-129. PubMed ID: 29023197
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Identifying core gene modules in glioblastoma based on multilayer factor-mediated dysfunctional regulatory networks through integrating multi-dimensional genomic data.
    Ping Y; Deng Y; Wang L; Zhang H; Zhang Y; Xu C; Zhao H; Fan H; Yu F; Xiao Y; Li X
    Nucleic Acids Res; 2015 Feb; 43(4):1997-2007. PubMed ID: 25653168
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Aberrant RNA splicing in cancer; expression changes and driver mutations of splicing factor genes.
    Sveen A; Kilpinen S; Ruusulehto A; Lothe RA; Skotheim RI
    Oncogene; 2016 May; 35(19):2413-27. PubMed ID: 26300000
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Whole-exome sequencing reveals recurrent somatic mutation networks in cancer.
    Liu X; Wang J; Chen L
    Cancer Lett; 2013 Nov; 340(2):270-6. PubMed ID: 23153794
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A pan-cancer atlas of cancer hallmark-associated candidate driver lncRNAs.
    Deng Y; Luo S; Zhang X; Zou C; Yuan H; Liao G; Xu L; Deng C; Lan Y; Zhao T; Gao X; Xiao Y; Li X
    Mol Oncol; 2018 Nov; 12(11):1980-2005. PubMed ID: 30216655
    [TBL] [Abstract][Full Text] [Related]  

  • 37. A computational method for clinically relevant cancer stratification and driver mutation module discovery using personal genomics profiles.
    Wang L; Li F; Sheng J; Wong ST
    BMC Genomics; 2015; 16 Suppl 7(Suppl 7):S6. PubMed ID: 26099165
    [TBL] [Abstract][Full Text] [Related]  

  • 38. How the evolution of multicellularity set the stage for cancer.
    Trigos AS; Pearson RB; Papenfuss AT; Goode DL
    Br J Cancer; 2018 Jan; 118(2):145-152. PubMed ID: 29337961
    [TBL] [Abstract][Full Text] [Related]  

  • 39. DriverDBv2: a database for human cancer driver gene research.
    Chung IF; Chen CY; Su SC; Li CY; Wu KJ; Wang HW; Cheng WC
    Nucleic Acids Res; 2016 Jan; 44(D1):D975-9. PubMed ID: 26635391
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Splice site proximity influences alternative exon definition.
    Carranza F; Shenasa H; Hertel KJ
    RNA Biol; 2022 Jan; 19(1):829-840. PubMed ID: 35723015
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.