BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

179 related articles for article (PubMed ID: 25873590)

  • 41. Read-Split-Run: an improved bioinformatics pipeline for identification of genome-wide non-canonical spliced regions using RNA-Seq data.
    Bai Y; Kinne J; Donham B; Jiang F; Ding L; Hassler JR; Kaufman RJ
    BMC Genomics; 2016 Aug; 17 Suppl 7(Suppl 7):503. PubMed ID: 27556805
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Construction and analysis of lncRNA-lncRNA synergistic networks to reveal clinically relevant lncRNAs in cancer.
    Li Y; Chen J; Zhang J; Wang Z; Shao T; Jiang C; Xu J; Li X
    Oncotarget; 2015 Sep; 6(28):25003-16. PubMed ID: 26305674
    [TBL] [Abstract][Full Text] [Related]  

  • 43. A multiple genomic data fused SF2 prediction model, signature identification, and gene regulatory network inference for personalized radiotherapy.
    He QE; Tong YF; Ye Z; Gao LX; Zhang YZ; Wang L; Song K
    Technol Cancer Res Treat; 2020; 19():1533033820909112. PubMed ID: 32329416
    [TBL] [Abstract][Full Text] [Related]  

  • 44. SRSF1-Regulated Alternative Splicing in Breast Cancer.
    Anczuków O; Akerman M; Cléry A; Wu J; Shen C; Shirole NH; Raimer A; Sun S; Jensen MA; Hua Y; Allain FH; Krainer AR
    Mol Cell; 2015 Oct; 60(1):105-17. PubMed ID: 26431027
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Inferring regulatory element landscapes and transcription factor networks from cancer methylomes.
    Yao L; Shen H; Laird PW; Farnham PJ; Berman BP
    Genome Biol; 2015 May; 16(1):105. PubMed ID: 25994056
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Low duplicability and network fragility of cancer genes.
    Rambaldi D; Giorgi FM; Capuani F; Ciliberto A; Ciccarelli FD
    Trends Genet; 2008 Sep; 24(9):427-30. PubMed ID: 18675489
    [TBL] [Abstract][Full Text] [Related]  

  • 47. KatzDriver: A network based method to cancer causal genes discovery in gene regulatory network.
    Akhavan-Safar M; Teimourpour B
    Biosystems; 2021 Mar; 201():104326. PubMed ID: 33309969
    [TBL] [Abstract][Full Text] [Related]  

  • 48. DrGaP: a powerful tool for identifying driver genes and pathways in cancer sequencing studies.
    Hua X; Xu H; Yang Y; Zhu J; Liu P; Lu Y
    Am J Hum Genet; 2013 Sep; 93(3):439-51. PubMed ID: 23954162
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Exonization of transposed elements: A challenge and opportunity for evolution.
    Schmitz J; Brosius J
    Biochimie; 2011 Nov; 93(11):1928-34. PubMed ID: 21787833
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Engineering DYRK1A overdosage yields Down syndrome-characteristic cortical splicing aberrations.
    Toiber D; Azkona G; Ben-Ari S; Torán N; Soreq H; Dierssen M
    Neurobiol Dis; 2010 Oct; 40(1):348-59. PubMed ID: 20600907
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Finding microRNA regulatory modules in human genome using rule induction.
    Tran DH; Satou K; Ho TB
    BMC Bioinformatics; 2008 Dec; 9 Suppl 12(Suppl 12):S5. PubMed ID: 19091028
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Identification of deregulation mechanisms specific to cancer subtypes.
    Champion M; Chiquet J; Neuvial P; Elati M; Radvanyi F; Birmelé E
    J Bioinform Comput Biol; 2021 Feb; 19(1):2140003. PubMed ID: 33653235
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Transcriptome-Wide Detection of Intron/Exon Definition in the Endogenous Pre-mRNA Transcripts of Mammalian Cells and Its Regulation by Depolarization.
    Liu L; Das U; Ogunsola S; Xie J
    Int J Mol Sci; 2022 Sep; 23(17):. PubMed ID: 36077555
    [TBL] [Abstract][Full Text] [Related]  

  • 54. DEOD: uncovering dominant effects of cancer-driver genes based on a partial covariance selection method.
    Amgalan B; Lee H
    Bioinformatics; 2015 Aug; 31(15):2452-60. PubMed ID: 25819079
    [TBL] [Abstract][Full Text] [Related]  

  • 55. A novel network control model for identifying personalized driver genes in cancer.
    Guo WF; Zhang SW; Zeng T; Li Y; Gao J; Chen L
    PLoS Comput Biol; 2019 Nov; 15(11):e1007520. PubMed ID: 31765387
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Purifying Selection on Exonic Splice Enhancers in Intronless Genes.
    Savisaar R; Hurst LD
    Mol Biol Evol; 2016 Jun; 33(6):1396-418. PubMed ID: 26802218
    [TBL] [Abstract][Full Text] [Related]  

  • 57. The mutational landscape of phosphorylation signaling in cancer.
    Reimand J; Wagih O; Bader GD
    Sci Rep; 2013 Oct; 3():2651. PubMed ID: 24089029
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Changes in exon-intron structure during vertebrate evolution affect the splicing pattern of exons.
    Gelfman S; Burstein D; Penn O; Savchenko A; Amit M; Schwartz S; Pupko T; Ast G
    Genome Res; 2012 Jan; 22(1):35-50. PubMed ID: 21974994
    [TBL] [Abstract][Full Text] [Related]  

  • 59. RNA analysis reveals splicing mutations and loss of expression defects in MLH1 and BRCA1.
    Sharp A; Pichert G; Lucassen A; Eccles D
    Hum Mutat; 2004 Sep; 24(3):272. PubMed ID: 15300854
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Background splicing as a predictor of aberrant splicing in genetic disease.
    D A; Y L; R S; H D; E B; Rm W; I V; L C; N J D
    RNA Biol; 2022; 19(1):256-265. PubMed ID: 35188075
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.