BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

574 related articles for article (PubMed ID: 25873657)

  • 41. The Arabidopsis thaliana sulfiredoxin is a plastidic cysteine-sulfinic acid reductase involved in the photooxidative stress response.
    Rey P; Bécuwe N; Barrault MB; Rumeau D; Havaux M; Biteau B; Toledano MB
    Plant J; 2007 Feb; 49(3):505-14. PubMed ID: 17217469
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Does the oxidative stress in chronic obstructive pulmonary disease cause thioredoxin/peroxiredoxin oxidation?
    Lehtonen ST; Ohlmeier S; Kaarteenaho-Wiik R; Harju T; Pääkkö P; Soini Y; Kinnula VL
    Antioxid Redox Signal; 2008 Apr; 10(4):813-9. PubMed ID: 18179358
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Nitric oxide and the thioredoxin system: a complex interplay in redox regulation.
    Benhar M
    Biochim Biophys Acta; 2015 Dec; 1850(12):2476-84. PubMed ID: 26388496
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Peroxiredoxins in plants and cyanobacteria.
    Dietz KJ
    Antioxid Redox Signal; 2011 Aug; 15(4):1129-59. PubMed ID: 21194355
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Sulfiredoxin Translocation into Mitochondria Plays a Crucial Role in Reducing Hyperoxidized Peroxiredoxin III.
    Noh YH; Baek JY; Jeong W; Rhee SG; Chang TS
    J Biol Chem; 2009 Mar; 284(13):8470-7. PubMed ID: 19176523
    [TBL] [Abstract][Full Text] [Related]  

  • 46. The plant multigenic family of thiol peroxidases.
    Rouhier N; Jacquot JP
    Free Radic Biol Med; 2005 Jun; 38(11):1413-21. PubMed ID: 15890615
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Hexameric oligomerization of mitochondrial peroxiredoxin PrxIIF and formation of an ultrahigh affinity complex with its electron donor thioredoxin Trx-o.
    Barranco-Medina S; Krell T; Bernier-Villamor L; Sevilla F; Lázaro JJ; Dietz KJ
    J Exp Bot; 2008; 59(12):3259-69. PubMed ID: 18632730
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Induction of sulfiredoxin via an Nrf2-dependent pathway and hyperoxidation of peroxiredoxin III in the lungs of mice exposed to hyperoxia.
    Bae SH; Woo HA; Sung SH; Lee HE; Lee SK; Kil IS; Rhee SG
    Antioxid Redox Signal; 2009 May; 11(5):937-48. PubMed ID: 19086807
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Computational simulation of the reactive oxygen species and redox network in the regulation of chloroplast metabolism.
    Gerken M; Kakorin S; Chibani K; Dietz KJ
    PLoS Comput Biol; 2020 Jan; 16(1):e1007102. PubMed ID: 31951606
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Trapping redox partnerships in oxidant-sensitive proteins with a small, thiol-reactive cross-linker.
    Allan KM; Loberg MA; Chepngeno J; Hurtig JE; Tripathi S; Kang MG; Allotey JK; Widdershins AH; Pilat JM; Sizek HJ; Murphy WJ; Naticchia MR; David JB; Morano KA; West JD
    Free Radic Biol Med; 2016 Dec; 101():356-366. PubMed ID: 27816612
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Interplay between protein carbonylation and nitrosylation in plants.
    Lounifi I; Arc E; Molassiotis A; Job D; Rajjou L; Tanou G
    Proteomics; 2013 Feb; 13(3-4):568-78. PubMed ID: 23034931
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Glutathionylation of Pea Chloroplast 2-Cys Prx and Mitochondrial Prx IIF Affects Their Structure and Peroxidase Activity and Sulfiredoxin Deglutathionylates Only the 2-Cys Prx.
    Calderón A; Lázaro-Payo A; Iglesias-Baena I; Camejo D; Lázaro JJ; Sevilla F; Jiménez A
    Front Plant Sci; 2017; 8():118. PubMed ID: 28197170
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Reduction of cysteine sulfinic acid by sulfiredoxin is specific to 2-cys peroxiredoxins.
    Woo HA; Jeong W; Chang TS; Park KJ; Park SJ; Yang JS; Rhee SG
    J Biol Chem; 2005 Feb; 280(5):3125-8. PubMed ID: 15590625
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Deglutathionylation of 2-Cys peroxiredoxin is specifically catalyzed by sulfiredoxin.
    Park JW; Mieyal JJ; Rhee SG; Chock PB
    J Biol Chem; 2009 Aug; 284(35):23364-74. PubMed ID: 19561357
    [TBL] [Abstract][Full Text] [Related]  

  • 55. The integration of TRX/GRX systems and phytohormonal signalling pathways in plant stress and development.
    Jiménez A; López-Martínez R; Martí MC; Cano-Yelo D; Sevilla F
    Plant Physiol Biochem; 2024 Feb; 207():108298. PubMed ID: 38176187
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Peroxiredoxin 1 and its role in cell signaling.
    Neumann CA; Cao J; Manevich Y
    Cell Cycle; 2009 Dec; 8(24):4072-8. PubMed ID: 19923889
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Modulating protein function through reversible oxidation: Redox-mediated processes in plants revealed through proteomics.
    Bykova NV; Rampitsch C
    Proteomics; 2013 Feb; 13(3-4):579-96. PubMed ID: 23197359
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Redox regulation: a broadening horizon.
    Buchanan BB; Balmer Y
    Annu Rev Plant Biol; 2005; 56():187-220. PubMed ID: 15862094
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Mitochondrial Peroxiredoxin-IIF (PRXIIF) Activity and Function during Seed Aging.
    Klupczyńska EA; Dietz KJ; Małecka A; Ratajczak E
    Antioxidants (Basel); 2022 Jun; 11(7):. PubMed ID: 35883717
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Oxidative post-translational modifications of cysteine residues in plant signal transduction.
    Waszczak C; Akter S; Jacques S; Huang J; Messens J; Van Breusegem F
    J Exp Bot; 2015 May; 66(10):2923-34. PubMed ID: 25750423
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 29.