These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 25873674)

  • 1. Preventing lodging in bioenergy crops: a biomechanical analysis of maize stalks suggests a new approach.
    Von Forell G; Robertson D; Lee SY; Cook DD
    J Exp Bot; 2015 Jul; 66(14):4367-71. PubMed ID: 25873674
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Maize stalk stiffness and strength are primarily determined by morphological factors.
    Stubbs CJ; Larson R; Cook DD
    Sci Rep; 2022 Jan; 12(1):720. PubMed ID: 35031627
    [TBL] [Abstract][Full Text] [Related]  

  • 3. High-throughput micro-phenotyping measurements applied to assess stalk lodging in maize (Zea mays L.).
    Zhang Y; Du J; Wang J; Ma L; Lu X; Pan X; Guo X; Zhao C
    Biol Res; 2018 Oct; 51(1):40. PubMed ID: 30368254
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cross-sectional geometry predicts failure location in maize stalks.
    Stubbs CJ; McMahan CS; Tabaracci K; Kunduru B; Sekhon RS; Robertson DJ
    Plant Methods; 2022 Apr; 18(1):56. PubMed ID: 35477510
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Stalk architecture, cell wall composition, and QTL underlying high stalk flexibility for improved lodging resistance in maize.
    Wang X; Shi Z; Zhang R; Sun X; Wang J; Wang S; Zhang Y; Zhao Y; Su A; Li C; Wang R; Zhang Y; Wang S; Wang Y; Song W; Zhao J
    BMC Plant Biol; 2020 Nov; 20(1):515. PubMed ID: 33176702
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Elucidating compositional factors of maize cell walls contributing to stalk strength and lodging resistance.
    Manga-Robles A; Santiago R; Malvar RA; Moreno-González V; Fornalé S; López I; Centeno ML; Acebes JL; Álvarez JM; Caparros-Ruiz D; Encina A; García-Angulo P
    Plant Sci; 2021 Jun; 307():110882. PubMed ID: 33902850
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Diverse maize hybrids are structurally inefficient at resisting wind induced bending forces that cause stalk lodging.
    Stubbs CJ; Seegmiller K; McMahan C; Sekhon RS; Robertson DJ
    Plant Methods; 2020; 16():67. PubMed ID: 32426024
    [TBL] [Abstract][Full Text] [Related]  

  • 8. High throughput phenotyping of cross-sectional morphology to assess stalk lodging resistance.
    Oduntan YA; Stubbs CJ; Robertson DJ
    Plant Methods; 2022 Jan; 18(1):1. PubMed ID: 34983578
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Genetic structure and molecular mechanism underlying the stalk lodging traits in maize (
    Wang S; Li H; Dong Z; Wang C; Wei X; Long Y; Wan X
    Comput Struct Biotechnol J; 2023; 21():485-494. PubMed ID: 36618981
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Experimental error analysis of biomechanical phenotyping for stalk lodging resistance in maize.
    DeKold J; Robertson D
    Sci Rep; 2023 Jul; 13(1):12178. PubMed ID: 37500669
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Measuring the transverse Young's modulus of maize rind and pith tissues.
    Stubbs CJ; Sun W; Cook DD
    J Biomech; 2019 Feb; 84():113-120. PubMed ID: 30635117
    [TBL] [Abstract][Full Text] [Related]  

  • 12. DARLING: a device for assessing resistance to lodging in grain crops.
    Cook DD; de la Chapelle W; Lin TC; Lee SY; Sun W; Robertson DJ
    Plant Methods; 2019; 15():102. PubMed ID: 31497063
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Genetic engineering approaches to improve bioethanol production from maize.
    Torney F; Moeller L; Scarpa A; Wang K
    Curr Opin Biotechnol; 2007 Jun; 18(3):193-9. PubMed ID: 17399975
    [TBL] [Abstract][Full Text] [Related]  

  • 14. On measuring the bending strength of septate grass stems.
    Robertson DJ; Smith SL; Cook DD
    Am J Bot; 2015 Jan; 102(1):5-11. PubMed ID: 25587143
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Biomechanical phenotyping pipeline for stalk lodging resistance in maize.
    Tabaracci K; Bokros NT; Oduntan Y; Kunduru B; DeKold J; Mengistie E; McDonald A; Stubbs CJ; Sekhon RS; DeBolt S; Robertson DJ
    MethodsX; 2024 Jun; 12():102562. PubMed ID: 38292308
    [TBL] [Abstract][Full Text] [Related]  

  • 16. In situ evaluation of stalk lodging resistance for different maize (
    Wen W; Gu S; Xiao B; Wang C; Wang J; Ma L; Wang Y; Lu X; Yu Z; Zhang Y; Du J; Guo X
    Plant Methods; 2019; 15():96. PubMed ID: 31452672
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Non-destructive high-throughput measurement of elastic-viscous properties of maize using a novel ultra-micro sensor array and numerical validation.
    Nakashima T; Tomobe H; Morigaki T; Yang M; Yamaguchi H; Kato Y; Guo W; Sharma V; Kimura H; Morikawa H
    Sci Rep; 2023 Mar; 13(1):4914. PubMed ID: 36966212
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A spatiotemporal transcriptomic network dynamically modulates stalk development in maize.
    Le L; Guo W; Du D; Zhang X; Wang W; Yu J; Wang H; Qiao H; Zhang C; Pu L
    Plant Biotechnol J; 2022 Dec; 20(12):2313-2331. PubMed ID: 36070002
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Evaluation of root lodging resistance during whole growth stage at the plant level in maize.
    Wang X; Li Y; Han W; Song Z; Wang S; Yang J
    Sci Rep; 2022 Jun; 12(1):10375. PubMed ID: 35725757
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Transcriptome analysis reveals the mechanism of internode development affecting maize stalk strength.
    Xie L; Wen D; Wu C; Zhang C
    BMC Plant Biol; 2022 Jan; 22(1):49. PubMed ID: 35073838
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.