These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 25873779)

  • 1. Understanding Regeneration of Arsenate-Loaded Ferric Hydroxide-Based Adsorbents.
    Chaudhary BK; Farrell J
    Environ Eng Sci; 2015 Apr; 32(4):353-360. PubMed ID: 25873779
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Removal of arsenic by bead cellulose loaded with iron oxyhydroxide from groundwater.
    Guo X; Chen F
    Environ Sci Technol; 2005 Sep; 39(17):6808-18. PubMed ID: 16190243
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effect of inorganic regenerant properties on pharmaceutical adsorption and desorption performance on polymer anion exchange resin.
    Zheng S; Li X; Zhang X; Wang W; Yuan S
    Chemosphere; 2017 Sep; 182():325-331. PubMed ID: 28505573
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Preparation and Characterization of Homopolymer Polyacrylonitrile-Based Fibrous Sorbents for Arsenic Removal.
    Chaudhary BK; Farrell J
    Environ Eng Sci; 2014 Nov; 31(11):593-601. PubMed ID: 25371651
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Maghemite nanoparticles for As(V) removal: desorption characteristics and adsorbent recovery.
    Tuutijärvi T; Vahalaa R; Sillanpitää M; Chen G
    Environ Technol; 2012 Sep; 33(16-18):1927-36. PubMed ID: 23240185
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Tridentate arsenate complexation with ferric hydroxide and its effect on the kinetics of arsenate adsorption and desorption.
    Farrell J
    Chemosphere; 2017 Oct; 184():1209-1214. PubMed ID: 28672703
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Understanding arsenate reaction kinetics with ferric hydroxides.
    Farrell J; Chaudhary BK
    Environ Sci Technol; 2013 Aug; 47(15):8342-7. PubMed ID: 23806140
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Elimination of As(V) by bead cellulose adsorbent loaded with Fe (beta-FeOOH) from groundwater].
    Guo XJ; Chen FH
    Huan Jing Ke Xue; 2005 May; 26(3):66-72. PubMed ID: 16124472
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ion exchange nutrient recovery from anaerobic membrane bioreactor permeate.
    Mullen P; Venkiteshwaran K; Zitomer DH; Mayer BK
    Water Environ Res; 2019 Jul; 91(7):606-615. PubMed ID: 30737846
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Zirconia pillared montmorillonite for removal of arsenate from water.
    Peng X; Luan Z; Zhang H; Tian B
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2005; 40(5):1055-67. PubMed ID: 15887574
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Adsorption of arsenate on Cu/Mg/Fe/La layered double hydroxide from aqueous solutions.
    Guo Y; Zhu Z; Qiu Y; Zhao J
    J Hazard Mater; 2012 Nov; 239-240():279-88. PubMed ID: 23000241
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Arsenic removal from water using lignocellulose adsorption medium (LAM).
    Kim J; Mann JD; Spencer JG
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2006; 41(8):1529-42. PubMed ID: 16835109
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Phosphate removal and recovery with a synthetic hydrotalcite as an adsorbent.
    Kuzawa K; Jung YJ; Kiso Y; Yamada T; Nagai M; Lee TG
    Chemosphere; 2006 Jan; 62(1):45-52. PubMed ID: 15951001
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A novel approach for arsenic adsorbents regeneration using MgO.
    Tresintsi S; Simeonidis K; Katsikini M; Paloura EC; Bantsis G; Mitrakas M
    J Hazard Mater; 2014 Jan; 265():217-25. PubMed ID: 24361801
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Removal of As (V) from the aqueous solution by a modified granular ferric hydroxide adsorbent.
    Pham TT; Ngo HH; Tran VS; Nguyen MK
    Sci Total Environ; 2020 Mar; 706():135947. PubMed ID: 31846881
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Removal of Arsenic Using a Cationic Polymer Gel Impregnated with Iron Hydroxide.
    Safi SR; Gotoh T; Iizawa T; Nakai S
    J Vis Exp; 2019 Jun; (148):. PubMed ID: 31305523
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Impacts of chloride-form anion exchange seawater regeneration performance.
    Whalen DA; Duranceau SJ
    Environ Technol; 2023 Jun; 44(14):2065-2079. PubMed ID: 34927552
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Novel regeneration method for phosphate loaded granular ferric (hydr)oxide--a contribution to phosphorus recycling.
    Kunaschk M; Schmalz V; Dietrich N; Dittmar T; Worch E
    Water Res; 2015 Mar; 71():219-26. PubMed ID: 25618522
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Selective removal of arsenate from drinking water using a polymeric ligand exchanger.
    An B; Steinwinder TR; Zhao D
    Water Res; 2005 Dec; 39(20):4993-5004. PubMed ID: 16310241
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Simultaneous removal of As(V) and Cr(VI) from water by macroporous anion exchanger supported nanoscale hydrous ferric oxide composite.
    Hua M; Yang B; Shan C; Zhang W; He S; Lv L; Pan B
    Chemosphere; 2017 Mar; 171():126-133. PubMed ID: 28012384
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.