BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

219 related articles for article (PubMed ID: 25873872)

  • 21. Syntaxin 1A modulates the sexual maturity rate and progeny egg size related to phase changes in locusts.
    Chen Q; He J; Ma C; Yu D; Kang L
    Insect Biochem Mol Biol; 2015 Jan; 56():1-8. PubMed ID: 25446392
    [TBL] [Abstract][Full Text] [Related]  

  • 22. A retinal-binding protein mediates olfactory attraction in the migratory locusts.
    Ma Z; Liu J; Guo X
    Insect Biochem Mol Biol; 2019 Nov; 114():103214. PubMed ID: 31442488
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Roles of OA1 octopamine receptor and Dop1 dopamine receptor in mediating appetitive and aversive reinforcement revealed by RNAi studies.
    Awata H; Wakuda R; Ishimaru Y; Matsuoka Y; Terao K; Katata S; Matsumoto Y; Hamanaka Y; Noji S; Mito T; Mizunami M
    Sci Rep; 2016 Jul; 6():29696. PubMed ID: 27412401
    [TBL] [Abstract][Full Text] [Related]  

  • 24. MicroRNA-133 inhibits behavioral aggregation by controlling dopamine synthesis in locusts.
    Yang M; Wei Y; Jiang F; Wang Y; Guo X; He J; Kang L
    PLoS Genet; 2014 Feb; 10(2):e1004206. PubMed ID: 24586212
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Locust density shapes energy metabolism and oxidative stress resulting in divergence of flight traits.
    Du B; Ding D; Ma C; Guo W; Kang L
    Proc Natl Acad Sci U S A; 2022 Jan; 119(1):. PubMed ID: 34969848
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Altered immunity in crowded locust reduced fungal (Metarhizium anisopliae) pathogenesis.
    Wang Y; Yang P; Cui F; Kang L
    PLoS Pathog; 2013 Jan; 9(1):e1003102. PubMed ID: 23326229
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Unveiling the mechanism by which microsporidian parasites prevent locust swarm behavior.
    Shi W; Guo Y; Xu C; Tan S; Miao J; Feng Y; Zhao H; St Leger RJ; Fang W
    Proc Natl Acad Sci U S A; 2014 Jan; 111(4):1343-8. PubMed ID: 24474758
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The biochemistry of locusts; carotenoid distribution in solitary and gregarious phases of the African migratory locust (Locusta migratoria migratorioides R. & F.) and the desert locust (Schistocerca gregaria Fersk).
    GOODWIN TW
    Biochem J; 1949; 45(4):472-9. PubMed ID: 15394441
    [No Abstract]   [Full Text] [Related]  

  • 29. Metabolomic analysis reveals that carnitines are key regulatory metabolites in phase transition of the locusts.
    Wu R; Wu Z; Wang X; Yang P; Yu D; Zhao C; Xu G; Kang L
    Proc Natl Acad Sci U S A; 2012 Feb; 109(9):3259-63. PubMed ID: 22328148
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Substantial changes in central nervous system neurotransmitters and neuromodulators accompany phase change in the locust.
    Rogers SM; Matheson T; Sasaki K; Kendrick K; Simpson SJ; Burrows M
    J Exp Biol; 2004 Sep; 207(Pt 20):3603-17. PubMed ID: 15339956
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Population Density-Dependent Developmental Regulation in Migratory Locust.
    Shen S; Zhang L; Zhang L
    Insects; 2024 Jun; 15(6):. PubMed ID: 38921158
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Aggregation pheromone 4-vinylanisole promotes the synchrony of sexual maturation in female locusts.
    Chen D; Hou L; Wei J; Guo S; Cui W; Yang P; Kang L; Wang X
    Elife; 2022 Mar; 11():. PubMed ID: 35258453
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Cytosolic and mitochondrial ribosomal proteins mediate the locust phase transition via divergence of translational profiles.
    Li J; Wei L; Wang Y; Zhang H; Yang P; Zhao Z; Kang L
    Proc Natl Acad Sci U S A; 2023 Jan; 120(5):e2216851120. PubMed ID: 36701367
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Paternal epigenetic effects of population density on locust phase-related characteristics associated with heat-shock protein expression.
    Chen B; Li S; Ren Q; Tong X; Zhang X; Kang L
    Mol Ecol; 2015 Feb; 24(4):851-62. PubMed ID: 25581246
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Critical role for protein kinase A in the acquisition of gregarious behavior in the desert locust.
    Ott SR; Verlinden H; Rogers SM; Brighton CH; Quah PS; Vleugels RK; Verdonck R; Vanden Broeck J
    Proc Natl Acad Sci U S A; 2012 Feb; 109(7):E381-7. PubMed ID: 22184243
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Phase-related differences in egg production of the migratory locust regulated by differential oosorption through microRNA-34 targeting activinβ.
    Zhao L; Guo W; Jiang F; He J; Liu H; Song J; Yu D; Kang L
    PLoS Genet; 2021 Jan; 17(1):e1009174. PubMed ID: 33406121
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Identification and functional analysis of olfactory receptor family reveal unusual characteristics of the olfactory system in the migratory locust.
    Wang Z; Yang P; Chen D; Jiang F; Li Y; Wang X; Kang L
    Cell Mol Life Sci; 2015 Nov; 72(22):4429-43. PubMed ID: 26265180
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Knockdown of the corazonin gene reveals its critical role in the control of gregarious characteristics in the desert locust.
    Sugahara R; Saeki S; Jouraku A; Shiotsuki T; Tanaka S
    J Insect Physiol; 2015 Aug; 79():80-7. PubMed ID: 26092175
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Characteristics and expression patterns of histone-modifying enzyme systems in the migratory locust.
    Guo S; Jiang F; Yang P; Liu Q; Wang X; Kang L
    Insect Biochem Mol Biol; 2016 Sep; 76():18-28. PubMed ID: 27343382
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Increase of Albinistic Hosts Caused by Gut Parasites Promotes Self-Transmission.
    Tan S; Wang Y; Liu P; Ge Y; Li A; Xing Y; Hunter DM; Shi W
    Front Microbiol; 2018; 9():1525. PubMed ID: 30042753
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.