BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

109 related articles for article (PubMed ID: 25874014)

  • 1. Genetic Variability of MicroRNA Genes in 15 Animal Species.
    Zorc M; Obsteter J; Dovc P; Kunej T
    J Genomics; 2015; 3():51-6. PubMed ID: 25874014
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Genome-wide in silico screening for microRNA genetic variability in livestock species.
    Jevsinek Skok D; Godnic I; Zorc M; Horvat S; Dovc P; Kovac M; Kunej T
    Anim Genet; 2013 Dec; 44(6):669-77. PubMed ID: 23865691
    [TBL] [Abstract][Full Text] [Related]  

  • 3. In silico screening of the chicken genome for overlaps between genomic regions: microRNA genes, coding and non-coding transcriptional units, QTL, and genetic variations.
    Zorc M; Kunej T
    Chromosome Res; 2016 May; 24(2):225-30. PubMed ID: 26800695
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Catalog of genetic variants within mature microRNA seed regions in chicken.
    Zorc M; Omejec S; Tercic D; Holcman A; Dovc P; Kunej T
    Poult Sci; 2015 Sep; 94(9):2037-40. PubMed ID: 26175051
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Catalog of microRNA seed polymorphisms in vertebrates.
    Zorc M; Skok DJ; Godnic I; Calin GA; Horvat S; Jiang Z; Dovc P; Kunej T
    PLoS One; 2012; 7(1):e30737. PubMed ID: 22303453
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A Map of the microRNA Regulatory Networks Identified by Experimentally Validated microRNA-Target Interactions in Five Domestic Animals: Cattle, Pig, Sheep, Dog, and Chicken.
    Pasquini G; Kunej T
    OMICS; 2019 Sep; 23(9):448-456. PubMed ID: 31381467
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Genetic variability of microRNA regulome in human.
    Obsteter J; Dovc P; Kunej T
    Mol Genet Genomic Med; 2015 Jan; 3(1):30-9. PubMed ID: 25629077
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Genome-wide and species-wide in silico screening for intragenic MicroRNAs in human, mouse and chicken.
    Godnic I; Zorc M; Jevsinek Skok D; Calin GA; Horvat S; Dovc P; Kovac M; Kunej T
    PLoS One; 2013; 8(6):e65165. PubMed ID: 23762306
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Application of the targeted sequencing approach reveals the single nucleotide polymorphism (SNP) repertoire in microRNA genes in the pig genome.
    Pawlina-Tyszko K; Semik-Gurgul E; Gurgul A; Oczkowicz M; Szmatoła T; Bugno-Poniewierska M
    Sci Rep; 2021 May; 11(1):9848. PubMed ID: 33972633
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Genome-wide identification of SNPs in microRNA genes and the SNP effects on microRNA target binding and biogenesis.
    Gong J; Tong Y; Zhang HM; Wang K; Hu T; Shan G; Sun J; Guo AY
    Hum Mutat; 2012 Jan; 33(1):254-63. PubMed ID: 22045659
    [TBL] [Abstract][Full Text] [Related]  

  • 11. MicroRNA Polymorphisms in Cancer: A Literature Analysis.
    Pipan V; Zorc M; Kunej T
    Cancers (Basel); 2015 Sep; 7(3):1806-14. PubMed ID: 26371044
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Genetic diversity in the plasticity zone and the presence of the chlamydial plasmid differentiates Chlamydia pecorum strains from pigs, sheep, cattle, and koalas.
    Jelocnik M; Bachmann NL; Kaltenboeck B; Waugh C; Woolford L; Speight KN; Gillett A; Higgins DP; Flanagan C; Myers GS; Timms P; Polkinghorne A
    BMC Genomics; 2015 Nov; 16():893. PubMed ID: 26531162
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Genome-Wide microRNA Binding Site Variation between Extinct Wild Aurochs and Modern Cattle Identifies Candidate microRNA-Regulated Domestication Genes.
    Braud M; Magee DA; Park SD; Sonstegard TS; Waters SM; MacHugh DE; Spillane C
    Front Genet; 2017; 8():3. PubMed ID: 28197171
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A complex crosstalk between polymorphic microRNA target sites and AD prognosis.
    Mallick B; Ghosh Z
    RNA Biol; 2011; 8(4):665-73. PubMed ID: 21659796
    [TBL] [Abstract][Full Text] [Related]  

  • 15. In silico analysis of polymorphisms in microRNAs that target genes affecting aerobic glycolysis.
    Suresh PS; Venkatesh T; Tsutsumi R
    Ann Transl Med; 2016 Feb; 4(4):69. PubMed ID: 27004216
    [TBL] [Abstract][Full Text] [Related]  

  • 16. MicroRNA-Target Interactions Reloaded: Identification of Potentially Functional Sequence Variants Within Validated MicroRNA-Target Interactions.
    Piletic K; Kunej T
    OMICS; 2018 Nov; 22(11):700-708. PubMed ID: 30457469
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Association of single nucleotide polymorphisms in the microRNA miR-1596 locus with residual feed intake in chickens.
    Luo C; Sun L; Ma J; Wang J; Qu H; Shu D
    Anim Genet; 2015 Jun; 46(3):265-71. PubMed ID: 25818998
    [TBL] [Abstract][Full Text] [Related]  

  • 18. In silico genome-wide miRNA-QTL-SNPs analyses identify a functional SNP associated with mastitis in Holsteins.
    Jiang Q; Zhao H; Li R; Zhang Y; Liu Y; Wang J; Wang X; Ju Z; Liu W; Hou M; Huang J
    BMC Genet; 2019 May; 20(1):46. PubMed ID: 31096910
    [TBL] [Abstract][Full Text] [Related]  

  • 19. regQTLs: Single nucleotide polymorphisms that modulate microRNA regulation of gene expression in tumors.
    Wilk G; Braun R
    PLoS Genet; 2018 Dec; 14(12):e1007837. PubMed ID: 30557297
    [TBL] [Abstract][Full Text] [Related]  

  • 20. An ancestral miR-1304 allele present in Neanderthals regulates genes involved in enamel formation and could explain dental differences with modern humans.
    Lopez-Valenzuela M; Ramírez O; Rosas A; García-Vargas S; de la Rasilla M; Lalueza-Fox C; Espinosa-Parrilla Y
    Mol Biol Evol; 2012 Jul; 29(7):1797-806. PubMed ID: 22319171
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.