These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
148 related articles for article (PubMed ID: 25874433)
1. Preparation and characterization of humic acid-carbon hybrid materials as adsorbents for organic micro-pollutants. Radwan EK; Abdel Ghafar HH; Moursy AS; Langford CH; Bedair AH; Achari G Environ Sci Pollut Res Int; 2015 Aug; 22(16):12035-49. PubMed ID: 25874433 [TBL] [Abstract][Full Text] [Related]
2. Adsorption of selected endocrine disrupting compounds and pharmaceuticals on activated biochars. Jung C; Park J; Lim KH; Park S; Heo J; Her N; Oh J; Yun S; Yoon Y J Hazard Mater; 2013 Dec; 263 Pt 2():702-10. PubMed ID: 24231319 [TBL] [Abstract][Full Text] [Related]
3. Enhanced adsorption of humic acids on ordered mesoporous carbon compared with microporous activated carbon. Liu F; Xu Z; Wan H; Wan Y; Zheng S; Zhu D Environ Toxicol Chem; 2011 Apr; 30(4):793-800. PubMed ID: 21191879 [TBL] [Abstract][Full Text] [Related]
4. Synthesis, Characterization, and Environmental Applications of Hybrid Materials Based on Humic Acid Obtained by the Sol-Gel Route. Oliveira LK; Molina EF; Moura AL; de Faria EH; Ciuffi KJ ACS Appl Mater Interfaces; 2016 Jan; 8(2):1478-85. PubMed ID: 26700414 [TBL] [Abstract][Full Text] [Related]
5. Hydrophobic core/hydrophilic shell structured mesoporous silica nanospheres: enhanced adsorption of organic compounds from water. Li S; Jiao X; Yang H Langmuir; 2013 Jan; 29(4):1228-37. PubMed ID: 23293877 [TBL] [Abstract][Full Text] [Related]
6. Rapid and efficient removal of Pb(II) from aqueous solutions using biomass-derived activated carbon with humic acid in-situ modification. Guo Z; Zhang J; Kang Y; Liu H Ecotoxicol Environ Saf; 2017 Nov; 145():442-448. PubMed ID: 28778043 [TBL] [Abstract][Full Text] [Related]
7. Effect of organic carbon chemistry on sorption of atrazine and metsulfuron-methyl as determined by (13)C-NMR and IR spectroscopy. Dutta A; Mandal A; Manna S; Singh SB; Berns AE; Singh N Environ Monit Assess; 2015 Oct; 187(10):620. PubMed ID: 26353968 [TBL] [Abstract][Full Text] [Related]
8. Mesoporous carbon adsorbents from melamine-formaldehyde resin using nanocasting technique for CO2 adsorption. Goel C; Bhunia H; Bajpai PK J Environ Sci (China); 2015 Jun; 32():238-48. PubMed ID: 26040750 [TBL] [Abstract][Full Text] [Related]
9. Zeolite materials prepared using silicate waste from template synthesis of ordered mesoporous carbon. Kim YK; Rajesh KP; Yu JS J Hazard Mater; 2013 Sep; 260():350-7. PubMed ID: 23792927 [TBL] [Abstract][Full Text] [Related]
10. Spectroscopic studies of the effect of aerobic conditions on the chemical characteristics of humic acid in landfill leachate and its implication for the environment. Xiaoli C; Yongxia H; Guixiang L; Xin Z; Youcai Z Chemosphere; 2013 May; 91(7):1058-63. PubMed ID: 23461837 [TBL] [Abstract][Full Text] [Related]
11. Toward an effective adsorbent for polar pollutants: formaldehyde adsorption by activated carbon. Lee KJ; Miyawaki J; Shiratori N; Yoon SH; Jang J J Hazard Mater; 2013 Sep; 260():82-8. PubMed ID: 23747466 [TBL] [Abstract][Full Text] [Related]
12. Effects of organic matter content and composition on ammonium adsorption in lake sediments. Zhang L; Wang S; Jiao L; Li Y; Yang J; Zhang R; Feng S; Wang J Environ Sci Pollut Res Int; 2016 Apr; 23(7):6179-87. PubMed ID: 26604200 [TBL] [Abstract][Full Text] [Related]
13. Carbon nanotube-grafted chitosan and its adsorption capacity for phenol in aqueous solution. Guo M; Wang J; Wang C; Strong PJ; Jiang P; Ok YS; Wang H Sci Total Environ; 2019 Sep; 682():340-347. PubMed ID: 31125747 [TBL] [Abstract][Full Text] [Related]
14. Recent advances in the use of graphene-family nanoadsorbents for removal of toxic pollutants from wastewater. Chowdhury S; Balasubramanian R Adv Colloid Interface Sci; 2014 Feb; 204():35-56. PubMed ID: 24412086 [TBL] [Abstract][Full Text] [Related]
15. High efficient removal of mercury from aqueous solution by polyaniline/humic acid nanocomposite. Zhang Y; Li Q; Sun L; Tang R; Zhai J J Hazard Mater; 2010 Mar; 175(1-3):404-9. PubMed ID: 19896766 [TBL] [Abstract][Full Text] [Related]
16. Effect of structural composition of humic acids on the sorption of a branched nonylphenol isomer. Li C; Berns AE; Schäffer A; Séquaris JM; Vereecken H; Ji R; Klumpp E Chemosphere; 2011 Jul; 84(4):409-14. PubMed ID: 21524780 [TBL] [Abstract][Full Text] [Related]
17. Comparability of composition of carbon functional groups in humic acids between inverse-gated decoupling and cross polarization/magic angle spinning 13C nuclear magnetic resonance techniques. Watanabe A; Fujitake N Anal Chim Acta; 2008 Jun; 618(1):110-5. PubMed ID: 18501252 [TBL] [Abstract][Full Text] [Related]
18. Facile synthesis of highly porous "carbon sponge" with adsorption and co-adsorption behavior of lead ions and atrazine. Yang F; Zhang S; Sun L; Zhang Y Environ Sci Pollut Res Int; 2018 Jul; 25(19):18705-18716. PubMed ID: 29705906 [TBL] [Abstract][Full Text] [Related]
19. Effect of mono and divalent salts on the conformation and composition of a humic acid and on atrazine adsorption. González-Márquez LC; Hansen AM; González-Farias FA Environ Sci Pollut Res Int; 2018 Jun; 25(18):17509-17518. PubMed ID: 29658067 [TBL] [Abstract][Full Text] [Related]
20. Convenient synthesis of porous carbon nanospheres with tunable pore structure and excellent adsorption capacity. Chang B; Guan D; Tian Y; Yang Z; Dong X J Hazard Mater; 2013 Nov; 262():256-64. PubMed ID: 24041819 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]