These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
271 related articles for article (PubMed ID: 25874503)
1. Biocompatible gold nanorods: one-step surface functionalization, highly colloidal stability, and low cytotoxicity. Liu K; Zheng Y; Lu X; Thai T; Lee NA; Bach U; Gooding JJ Langmuir; 2015 May; 31(17):4973-80. PubMed ID: 25874503 [TBL] [Abstract][Full Text] [Related]
2. Simple and Rapid Functionalization of Gold Nanorods with Oligonucleotides Using an mPEG-SH/Tween 20-Assisted Approach. Li J; Zhu B; Zhu Z; Zhang Y; Yao X; Tu S; Liu R; Jia S; Yang CJ Langmuir; 2015 Jul; 31(28):7869-76. PubMed ID: 26101941 [TBL] [Abstract][Full Text] [Related]
3. Surface chemistry of gold nanorods: origin of cell membrane damage and cytotoxicity. Wang L; Jiang X; Ji Y; Bai R; Zhao Y; Wu X; Chen C Nanoscale; 2013 Sep; 5(18):8384-91. PubMed ID: 23873113 [TBL] [Abstract][Full Text] [Related]
4. Carbon-Coated Gold Nanorods: A Facile Route to Biocompatible Materials for Photothermal Applications. Kaneti YV; Chen C; Liu M; Wang X; Yang JL; Taylor RA; Jiang X; Yu A ACS Appl Mater Interfaces; 2015 Nov; 7(46):25658-68. PubMed ID: 26535913 [TBL] [Abstract][Full Text] [Related]
5. Polysarcosine brush stabilized gold nanorods for in vivo near-infrared photothermal tumor therapy. Zhu H; Chen Y; Yan FJ; Chen J; Tao XF; Ling J; Yang B; He QJ; Mao ZW Acta Biomater; 2017 Mar; 50():534-545. PubMed ID: 28027959 [TBL] [Abstract][Full Text] [Related]
6. Significance of surface functionalization of Gold Nanorods for reduced effect on IgG stability and minimization of cytotoxicity. Alex SA; Rajiv S; Chakravarty S; Chandrasekaran N; Mukherjee A Mater Sci Eng C Mater Biol Appl; 2017 Feb; 71():744-754. PubMed ID: 27987768 [TBL] [Abstract][Full Text] [Related]
7. Formation of core-shell Au@Ag nanorods induced by catecholamines: A comparative study and an analytical application. Gorbunova MV; Apyari VV; Dmitrienko SG; Garshev AV Anal Chim Acta; 2016 Sep; 936():185-94. PubMed ID: 27566354 [TBL] [Abstract][Full Text] [Related]
8. Selective nanodecoration of modified cyclodextrin crystals with gold nanorods. Herrera B; Adura C; Yutronic N; Kogan MJ; Jara P J Colloid Interface Sci; 2013 Jan; 389(1):42-5. PubMed ID: 23062962 [TBL] [Abstract][Full Text] [Related]
9. Multidentate polyethylene glycol modified gold nanorods for in vivo near-infrared photothermal cancer therapy. Liu X; Huang N; Li H; Wang H; Jin Q; Ji J ACS Appl Mater Interfaces; 2014 Apr; 6(8):5657-68. PubMed ID: 24673744 [TBL] [Abstract][Full Text] [Related]
10. The stabilization and targeting of surfactant-synthesized gold nanorods. Rostro-Kohanloo BC; Bickford LR; Payne CM; Day ES; Anderson LJ; Zhong M; Lee S; Mayer KM; Zal T; Adam L; Dinney CP; Drezek RA; West JL; Hafner JH Nanotechnology; 2009 Oct; 20(43):434005. PubMed ID: 19801751 [TBL] [Abstract][Full Text] [Related]
11. Detoxification of gold nanorods by conjugation with thiolated poly(ethylene glycol) and their assessment as SERS-active carriers of Raman tags. Boca SC; Astilean S Nanotechnology; 2010 Jun; 21(23):235601. PubMed ID: 20463383 [TBL] [Abstract][Full Text] [Related]
12. Phospholipid stabilized gold nanorods: towards improved colloidal stability and biocompatibility. Santhosh PB; Thomas N; Sudhakar S; Chadha A; Mani E Phys Chem Chem Phys; 2017 Jul; 19(28):18494-18504. PubMed ID: 28682382 [TBL] [Abstract][Full Text] [Related]
13. Role of bromide in hydrogen peroxide oxidation of CTAB-stabilized gold nanorods in aqueous solutions. Zhu Q; Wu J; Zhao J; Ni W Langmuir; 2015 Apr; 31(14):4072-7. PubMed ID: 25785656 [TBL] [Abstract][Full Text] [Related]
14. BSA modification to reduce CTAB induced nonspecificity and cytotoxicity of aptamer-conjugated gold nanorods. Yasun E; Li C; Barut I; Janvier D; Qiu L; Cui C; Tan W Nanoscale; 2015 Jun; 7(22):10240-8. PubMed ID: 25990591 [TBL] [Abstract][Full Text] [Related]
15. Macrophages-Mediated Delivery of Small Gold Nanorods for Tumor Hypoxia Photoacoustic Imaging and Enhanced Photothermal Therapy. An L; Wang Y; Lin J; Tian Q; Xie Y; Hu J; Yang S ACS Appl Mater Interfaces; 2019 May; 11(17):15251-15261. PubMed ID: 30964253 [TBL] [Abstract][Full Text] [Related]
16. Surface interactions of gold nanorods and polysaccharides: From clusters to individual nanoparticles. de Barros HR; Piovan L; Sassaki GL; de Araujo Sabry D; Mattoso N; Nunes ÁM; Meneghetti MR; Riegel-Vidotti IC Carbohydr Polym; 2016 Nov; 152():479-486. PubMed ID: 27516295 [TBL] [Abstract][Full Text] [Related]
17. Preparation of envelope-type lipid nanoparticles containing gold nanorods for photothermal cancer therapy. Paraiso WKD; Tanaka H; Sato Y; Shirane D; Suzuki N; Ogra Y; Tange K; Nakai Y; Yoshioka H; Harashima H; Akita H Colloids Surf B Biointerfaces; 2017 Dec; 160():715-723. PubMed ID: 29035819 [TBL] [Abstract][Full Text] [Related]
18. The facile removal of CTAB from the surface of gold nanorods. He J; Unser S; Bruzas I; Cary R; Shi Z; Mehra R; Aron K; Sagle L Colloids Surf B Biointerfaces; 2018 Mar; 163():140-145. PubMed ID: 29291499 [TBL] [Abstract][Full Text] [Related]
19. Residual CTAB Ligands as Mass Spectrometry Labels to Monitor Cellular Uptake of Au Nanorods. García I; Henriksen-Lacey M; Sánchez-Iglesias A; Grzelczak M; Penadés S; Liz-Marzán LM J Phys Chem Lett; 2015 Jun; 6(11):2003-8. PubMed ID: 26266492 [TBL] [Abstract][Full Text] [Related]
20. Chitosan-ceramide coating on gold nanorod to improve its physiological stability and reduce the lipid surface-related toxicity. Battogtokh G; Gotov O; Ko YT Arch Pharm Res; 2017 Mar; 40(3):356-363. PubMed ID: 28078525 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]