These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
162 related articles for article (PubMed ID: 25874656)
1. Identification of nitrogen starvation-responsive microRNAs in Chrysanthemum nankingense. Song A; Wang L; Chen S; Jiang J; Guan Z; Li P; Chen F Plant Physiol Biochem; 2015 Jun; 91():41-8. PubMed ID: 25874656 [TBL] [Abstract][Full Text] [Related]
2. Genome-wide identification of microRNAs in response to low nitrate availability in maize leaves and roots. Xu Z; Zhong S; Li X; Li W; Rothstein SJ; Zhang S; Bi Y; Xie C PLoS One; 2011; 6(11):e28009. PubMed ID: 22132192 [TBL] [Abstract][Full Text] [Related]
3. Physiological responses and small RNAs changes in maize under nitrogen deficiency and resupply. Yang Z; Wang Z; Yang C; Yang Z; Li H; Wu Y Genes Genomics; 2019 Oct; 41(10):1183-1194. PubMed ID: 31313105 [TBL] [Abstract][Full Text] [Related]
4. Screening of differentially expressed microRNAs and target genes in two potato varieties under nitrogen stress. Lu Y; Zhang J; Han Z; Han Z; Li S; Zhang J; Ma H; Han Y BMC Plant Biol; 2022 Oct; 22(1):478. PubMed ID: 36207676 [TBL] [Abstract][Full Text] [Related]
5. Identification and characterisation of microRNAs and their target genes in phosphate-starved Nicotiana benthamiana by small RNA deep sequencing and 5'RACE analysis. Huen A; Bally J; Smith P BMC Genomics; 2018 Dec; 19(1):940. PubMed ID: 30558535 [TBL] [Abstract][Full Text] [Related]
6. Genome-wide identification and characterization of microRNAs by small RNA sequencing for low nitrogen stress in potato. Tiwari JK; Buckseth T; Zinta R; Saraswati A; Singh RK; Rawat S; Chakrabarti SK PLoS One; 2020; 15(5):e0233076. PubMed ID: 32428011 [TBL] [Abstract][Full Text] [Related]
7. Identification of MicroRNAs and their Targets Associated with Embryo Abortion during Chrysanthemum Cross Breeding via High-Throughput Sequencing. Zhang F; Dong W; Huang L; Song A; Wang H; Fang W; Chen F; Teng N PLoS One; 2015; 10(4):e0124371. PubMed ID: 25909659 [TBL] [Abstract][Full Text] [Related]
8. Combined small RNA and degradome sequencing reveals novel miRNAs and their targets in response to low nitrate availability in maize. Zhao Y; Xu Z; Mo Q; Zou C; Li W; Xu Y; Xie C Ann Bot; 2013 Aug; 112(3):633-42. PubMed ID: 23788746 [TBL] [Abstract][Full Text] [Related]
9. Genome-wide characterization of rice black streaked dwarf virus-responsive microRNAs in rice leaves and roots by small RNA and degradome sequencing. Sun Z; He Y; Li J; Wang X; Chen J Plant Cell Physiol; 2015 Apr; 56(4):688-99. PubMed ID: 25535197 [TBL] [Abstract][Full Text] [Related]
10. Identification and expression profiling of Vigna mungo microRNAs from leaf small RNA transcriptome by deep sequencing. Paul S; Kundu A; Pal A J Integr Plant Biol; 2014 Jan; 56(1):15-23. PubMed ID: 24138283 [TBL] [Abstract][Full Text] [Related]
11. Expression and tissue-specific localization of nitrate-responsive miRNAs in roots of maize seedlings. Trevisan S; Nonis A; Begheldo M; Manoli A; Palme K; Caporale G; Ruperti B; Quaggiotti S Plant Cell Environ; 2012 Jun; 35(6):1137-55. PubMed ID: 22211437 [TBL] [Abstract][Full Text] [Related]
12. Transcriptome-Wide Identification of miRNA Targets under Nitrogen Deficiency in Populus tomentosa Using Degradome Sequencing. Chen M; Bao H; Wu Q; Wang Y Int J Mol Sci; 2015 Jun; 16(6):13937-58. PubMed ID: 26096002 [TBL] [Abstract][Full Text] [Related]
13. Transcriptomic analyses of rice (Oryza sativa) genes and non-coding RNAs under nitrogen starvation using multiple omics technologies. Shin SY; Jeong JS; Lim JY; Kim T; Park JH; Kim JK; Shin C BMC Genomics; 2018 Jul; 19(1):532. PubMed ID: 30005603 [TBL] [Abstract][Full Text] [Related]
14. Genome-wide identification of microRNAs responding to early stages of phosphate deficiency in maize. Nie Z; Ren Z; Wang L; Su S; Wei X; Zhang X; Wu L; Liu D; Tang H; Liu H; Zhang S; Gao S Physiol Plant; 2016 Jun; 157(2):161-74. PubMed ID: 26572939 [TBL] [Abstract][Full Text] [Related]
15. High throughput sequencing reveals modulation of microRNAs in Vigna mungo upon Mungbean Yellow Mosaic India Virus inoculation highlighting stress regulation. Kundu A; Paul S; Dey A; Pal A Plant Sci; 2017 Apr; 257():96-105. PubMed ID: 28224923 [TBL] [Abstract][Full Text] [Related]
16. An integrated analysis of mRNA and sRNA transcriptional profiles in Coffea arabica L. roots: insights on nitrogen starvation responses. Dos Santos TB; Soares JDM; Lima JE; Silva JC; Ivamoto ST; Baba VY; Souza SGH; Lorenzetti APR; Paschoal AR; Meda AR; Nishiyama Júnior MY; de Oliveira ÚC; Mokochinski JB; Guyot R; Junqueira-de-Azevedo ILM; Figueira AVO; Mazzafera P; Júnior OR; Vieira LGE; Pereira LFP; Domingues DS Funct Integr Genomics; 2019 Jan; 19(1):151-169. PubMed ID: 30196429 [TBL] [Abstract][Full Text] [Related]
17. Identification of miRNAs and their target genes in Larix olgensis and verified of differential expression miRNAs. Zhang S; Yan S; Zhao J; Xiong H; An P; Wang J; Zhang H; Zhang L BMC Plant Biol; 2019 Jun; 19(1):247. PubMed ID: 31185902 [TBL] [Abstract][Full Text] [Related]
18. Grafting-responsive miRNAs in cucumber and pumpkin seedlings identified by high-throughput sequencing at whole genome level. Li C; Li Y; Bai L; Zhang T; He C; Yan Y; Yu X Physiol Plant; 2014 Aug; 151(4):406-22. PubMed ID: 24279842 [TBL] [Abstract][Full Text] [Related]
19. Identification of novel and conserved microRNAs in Panax notoginseng roots by high-throughput sequencing. Wei R; Qiu D; Wilson IW; Zhao H; Lu S; Miao J; Feng S; Bai L; Wu Q; Tu D; Ma X; Tang Q BMC Genomics; 2015 Oct; 16():835. PubMed ID: 26490136 [TBL] [Abstract][Full Text] [Related]
20. Identification of cold stress responsive microRNAs in two winter turnip rape (Brassica rapa L.) by high throughput sequencing. Zeng X; Xu Y; Jiang J; Zhang F; Ma L; Wu D; Wang Y; Sun W BMC Plant Biol; 2018 Mar; 18(1):52. PubMed ID: 29587648 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]