These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

186 related articles for article (PubMed ID: 25874725)

  • 41. Structural, electronic, magnetic and chemical properties of B-, C- and N-doped MgO(001) surfaces.
    Pašti IA; Skorodumova NV
    Phys Chem Chem Phys; 2016 Jan; 18(1):426-35. PubMed ID: 26616345
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Study the adsorption process of 5-Fluorouracil drug on the pristine and doped graphdiyne nanosheet.
    Yuan J; Mohamadi A
    J Mol Model; 2021 Jan; 27(2):32. PubMed ID: 33415359
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Effect of substitutionally boron-doped single-walled semiconducting zigzag carbon nanotubes on ammonia adsorption.
    Vikramaditya T; Sumithra K
    J Comput Chem; 2014 Mar; 35(7):586-94. PubMed ID: 24395720
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Application of borophene as catechol sensor: a computational study.
    Yang R; Wu C; Ebrahimiasl S
    J Mol Model; 2021 Oct; 27(11):310. PubMed ID: 34599669
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Adsorption mechanism of different toxic gases onto pristine BNC
    Chalase P; Deshpande S; Kumavat S; Deshpande M
    Phys Chem Chem Phys; 2023 Jul; 25(26):17337-17351. PubMed ID: 37345816
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Theoretical investigation of the interaction between carbon monoxide and carbon nanotubes with single-vacancy defects.
    Xiao B; Zhao JX; Ding YH; Sun CC
    Chemphyschem; 2010 Nov; 11(16):3505-10. PubMed ID: 20886591
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Computational study of electronic properties of X-doped hexagonal boron nitride (h-BN): X = (Li, Be, Al, C, Si).
    Asif QUA; Hussain A; Kashif M; Tayyab M; Rafique HM
    J Mol Model; 2021 Oct; 27(11):319. PubMed ID: 34633542
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Epigenetically modified nucleobases (5hmc, 5fc, and 5caC) interaction with boron and nitrogen doped porous graphene (B/N-pGr) as promising materials for biosensing application: A density functional theory calculations.
    Saravanan V; Rajamani A; Ramasamy S; Baazeem A; Upadhyaya IR
    Environ Res; 2021 Jun; 197():111133. PubMed ID: 33878317
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Studies of hydrogen sulfide and ammonia adsorption on P- and Si-doped graphene: density functional theory calculations.
    Comparán Padilla VE; Romero de la Cruz MT; Ávila Alvarado YE; García Díaz R; Rodríguez García CE; Hernández Cocoletzi G
    J Mol Model; 2019 Mar; 25(4):94. PubMed ID: 30859395
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Substitutionally doped phosphorene: electronic properties and gas sensing.
    Suvansinpan N; Hussain F; Zhang G; Chiu CH; Cai Y; Zhang YW
    Nanotechnology; 2016 Feb; 27(6):065708. PubMed ID: 26762814
    [TBL] [Abstract][Full Text] [Related]  

  • 51. An investigation of the positive effects of doping an Al atom on the adsorption of CO
    Wang G; Zheng K; Huang Y; Yu J; Wu H; Chen X; Tao LQ
    Phys Chem Chem Phys; 2020 May; 22(17):9368-9374. PubMed ID: 32309825
    [TBL] [Abstract][Full Text] [Related]  

  • 52. New insight into the enhanced visible-light photocatalytic activities of B-, C- and B/C-doped anatase TiO2 by first-principles.
    Yu J; Zhou P; Li Q
    Phys Chem Chem Phys; 2013 Aug; 15(29):12040-7. PubMed ID: 23426398
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Unraveling the effect of Al doping on CO adsorption at ZnO(101̄0).
    Nguyen DC; Phung TK; Vo DN; Le TH; Khieu DQ; Pham TLM
    RSC Adv; 2020 Nov; 10(67):40663-40672. PubMed ID: 35519212
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Adsorption/desorption process of formaldehyde onto iron doped graphene: a theoretical exploration from density functional theory calculations.
    Cortés-Arriagada D; Villegas-Escobar N; Miranda-Rojas S; Toro-Labbé A
    Phys Chem Chem Phys; 2017 Feb; 19(6):4179-4189. PubMed ID: 27990518
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Unravelling the adsorption and electroreduction performance of CO
    Wang D; Liu X; Yang H; Zhao Z; Liu Y; Qu X; Yang L; Feng M; Sun Z
    Phys Chem Chem Phys; 2023 Jun; 25(25):16952-16961. PubMed ID: 37326588
    [TBL] [Abstract][Full Text] [Related]  

  • 56. A theoretical study of silicon-doped boron nitride nanotubes serving as a potential chemical sensor for hydrogen cyanide.
    Wang R; Zhang D; Liu Y; Liu C
    Nanotechnology; 2009 Dec; 20(50):505704. PubMed ID: 19923655
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Adsorption of CO molecule on AlN nanotubes by parallel electric field.
    Peyghan AA; Baei MT; Hashemian S; Torabi P
    J Mol Model; 2013 Feb; 19(2):859-70. PubMed ID: 23073700
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Thymine adsorption on two-dimensional boron nitride structures: first-principles studies.
    Castro-Medina J; García-Toral D; López-Fuentes M; Sánchez-Castillo A; Torres-Morales S; de la Garza LM; Cocoletzi GH
    J Mol Model; 2017 Apr; 23(4):109. PubMed ID: 28285442
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Sensing Characteristics of a Graphene-like Boron Carbide Monolayer towards Selected Toxic Gases.
    Mahabal MS; Deshpande MD; Hussain T; Ahuja R
    Chemphyschem; 2015 Nov; 16(16):3511-7. PubMed ID: 26345696
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Hydrogen adsorption on boron doped graphene: an ab initio study.
    Miwa RH; Martins TB; Fazzio A
    Nanotechnology; 2008 Apr; 19(15):155708. PubMed ID: 21825632
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.