These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 25874810)

  • 1. Dynamical study, hydrogen bond analysis, and constant pH simulations of the beta carbonic anhydrase of Methanobacterium thermoautotrophicum.
    Bracht F; de Alencastro RB
    J Biomol Struct Dyn; 2016; 34(2):259-71. PubMed ID: 25874810
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Crystal structure of the "cab"-type beta class carbonic anhydrase from the archaeon Methanobacterium thermoautotrophicum.
    Strop P; Smith KS; Iverson TM; Ferry JG; Rees DC
    J Biol Chem; 2001 Mar; 276(13):10299-305. PubMed ID: 11096105
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Roles of the conserved aspartate and arginine in the catalytic mechanism of an archaeal beta-class carbonic anhydrase.
    Smith KS; Ingram-Smith C; Ferry JG
    J Bacteriol; 2002 Aug; 184(15):4240-5. PubMed ID: 12107142
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Structural and kinetic characterization of an archaeal beta-class carbonic anhydrase.
    Smith KS; Cosper NJ; Stalhandske C; Scott RA; Ferry JG
    J Bacteriol; 2000 Dec; 182(23):6605-13. PubMed ID: 11073902
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The catalytic properties of murine carbonic anhydrase VII.
    Earnhardt JN; Qian M; Tu C; Lakkis MM; Bergenhem NC; Laipis PJ; Tashian RE; Silverman DN
    Biochemistry; 1998 Jul; 37(30):10837-45. PubMed ID: 9692974
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A plant-type (beta-class) carbonic anhydrase in the thermophilic methanoarchaeon Methanobacterium thermoautotrophicum.
    Smith KS; Ferry JG
    J Bacteriol; 1999 Oct; 181(20):6247-53. PubMed ID: 10515911
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Proposal for a hydrogen bond network in the active site of the prototypic gamma-class carbonic anhydrase.
    Zimmerman SA; Ferry JG
    Biochemistry; 2006 Apr; 45(16):5149-57. PubMed ID: 16618104
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Influence of amino acid replacement at position 198 on catalytic properties of zinc-bound water in human carbonic anhydrase III.
    LoGrasso PV; Tu C; Chen X; Taoka S; Laipis PJ; Silverman DN
    Biochemistry; 1993 Jun; 32(22):5786-91. PubMed ID: 8504098
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Glutamate and aspartate as proton shuttles in mutants of carbonic anhydrase.
    Qian M; Tu C; Earnhardt JN; Laipis PJ; Silverman DN
    Biochemistry; 1997 Dec; 36(50):15758-64. PubMed ID: 9398305
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Structural analysis of the zinc hydroxide-Thr-199-Glu-106 hydrogen-bond network in human carbonic anhydrase II.
    Xue Y; Liljas A; Jonsson BH; Lindskog S
    Proteins; 1993 Sep; 17(1):93-106. PubMed ID: 7901850
    [TBL] [Abstract][Full Text] [Related]  

  • 11. An overview of the alpha-, beta- and gamma-carbonic anhydrases from Bacteria: can bacterial carbonic anhydrases shed new light on evolution of bacteria?
    Capasso C; Supuran CT
    J Enzyme Inhib Med Chem; 2015 Apr; 30(2):325-32. PubMed ID: 24766661
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Molecular dynamics simulations of human carbonic anhydrase II: insight into experimental results and the role of solvation.
    Lu D; Voth GA
    Proteins; 1998 Oct; 33(1):119-34. PubMed ID: 9741850
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Salicylaldoxime derivatives as new leads for the development of carbonic anhydrase inhibitors.
    Tuccinardi T; Bertini S; Granchi C; Ortore G; Macchia M; Minutolo F; Martinelli A; Supuran CT
    Bioorg Med Chem; 2013 Mar; 21(6):1511-5. PubMed ID: 23018095
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The structural basis of the low catalytic activities of the two minor β-carbonic anhydrases of the filamentous fungus Aspergillus fumigatus.
    Kim S; Kim NJ; Hong S; Kim S; Sung J; Jin MS
    J Struct Biol; 2019 Oct; 208(1):61-68. PubMed ID: 31376470
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Insights into the function of the zinc hydroxide-Thr199-Glu106 hydrogen bonding network in carbonic anhydrases.
    Merz KM
    J Mol Biol; 1990 Aug; 214(4):799-802. PubMed ID: 1974931
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Joint neutron crystallographic and NMR solution studies of Tyr residue ionization and hydrogen bonding: Implications for enzyme-mediated proton transfer.
    Michalczyk R; Unkefer CJ; Bacik JP; Schrader TE; Ostermann A; Kovalevsky AY; McKenna R; Fisher SZ
    Proc Natl Acad Sci U S A; 2015 May; 112(18):5673-8. PubMed ID: 25902526
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Computational evaluations of charge coupling and hydrogen bonding in the active site of a family 7 cellobiohydrolase.
    Granum DM; Vyas S; Sambasivarao SV; Maupin CM
    J Phys Chem B; 2014 Jan; 118(2):434-48. PubMed ID: 24359013
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Reversal of the hydrogen bond to zinc ligand histidine-119 dramatically diminishes catalysis and enhances metal equilibration kinetics in carbonic anhydrase II.
    Huang CC; Lesburg CA; Kiefer LL; Fierke CA; Christianson DW
    Biochemistry; 1996 Mar; 35(11):3439-46. PubMed ID: 8639494
    [TBL] [Abstract][Full Text] [Related]  

  • 19. An archaeal b-type cytochrome containing a nonfunctional carbonic anhydrase-like domain.
    Gomes CM; Kletzin A; Teixeira M
    J Biol Inorg Chem; 2002 Apr; 7(4-5):483-9. PubMed ID: 11941506
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Coordination Dynamics of Zinc Triggers the Rate Determining Proton Transfer in Human Carbonic Anhydrase II.
    Paul TK; Taraphder S
    Chemphyschem; 2020 Jul; 21(13):1455-1473. PubMed ID: 32329944
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.