These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

142 related articles for article (PubMed ID: 25874861)

  • 1. Numerical simulation and structural optimization of the inclined oil/water separator.
    Chen L; Wu S; Lu H; Huang K; Zhao L
    PLoS One; 2015; 10(4):e0124095. PubMed ID: 25874861
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Oil droplets and solid particles removal using circular separator with inclined coalescence mediums: comparison between co-current and counter-current flow.
    Ngu LH; Law PL; Wong KK; Yusof AA
    Water Sci Technol; 2010; 62(5):1129-35. PubMed ID: 20818055
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Separation of oil-in-water emulsion using two coalescers of different geometry.
    Sokolović RM; Govedarica DD; Sokolović DS
    J Hazard Mater; 2010 Mar; 175(1-3):1001-6. PubMed ID: 19962828
    [TBL] [Abstract][Full Text] [Related]  

  • 4. CFD modelling of flow field and particle tracking in a hydrodynamic stormwater separator.
    Lee JH; Bang KW; Choi CS; Lim HS
    Water Sci Technol; 2010; 62(10):2381-8. PubMed ID: 21076225
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Optimization of circular plate separators with cross flow for removal of oil droplets and solid particles.
    Ngu H; Wong KK; Law PL
    Water Environ Res; 2012 Apr; 84(4):299-304. PubMed ID: 22834217
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [Numerical simulation and optimization research of needle parameters in vial washing machine].
    Zhang H; Li Z; Liu Y; Liu H; Peng D; Wei G
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2014 Oct; 31(5):1057-60, 1064. PubMed ID: 25764721
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Separation of oil-in-water emulsions by microbubble treatment and the effect of adding coagulant or cationic surfactant on removal efficiency.
    Van Le T; Imai T; Higuchi T; Doi R; Teeka J; Xiaofeng S; Teerakun M
    Water Sci Technol; 2012; 66(5):1036-43. PubMed ID: 22797232
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Bioinspired materials for water supply and management: water collection, water purification and separation of water from oil.
    Brown PS; Bhushan B
    Philos Trans A Math Phys Eng Sci; 2016 Aug; 374(2073):. PubMed ID: 27354732
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Oil removal from water with yellow horn shell residues treated by ionic liquid.
    Li J; Luo M; Zhao CJ; Li CY; Wang W; Zu YG; Fu YJ
    Bioresour Technol; 2013 Jan; 128():673-8. PubMed ID: 23220401
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Simple and fast fabrication of superhydrophobic metal wire mesh for efficiently gravity-driven oil/water separation.
    Song B
    Mar Pollut Bull; 2016 Dec; 113(1-2):211-215. PubMed ID: 27624760
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Highly recyclable superhydrophobic sponge suitable for the selective sorption of high viscosity oil from water.
    Wang J; Geng G
    Mar Pollut Bull; 2015 Aug; 97(1-2):118-124. PubMed ID: 26092604
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Biomimetic super-lyophobic and super-lyophilic materials applied for oil/water separation: a new strategy beyond nature.
    Wang B; Liang W; Guo Z; Liu W
    Chem Soc Rev; 2015 Jan; 44(1):336-61. PubMed ID: 25311259
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Adaptable bioinspired special wetting surface for multifunctional oil/water separation.
    Kavalenka MN; Vüllers F; Kumberg J; Zeiger C; Trouillet V; Stein S; Ava TT; Li C; Worgull M; Hölscher H
    Sci Rep; 2017 Jan; 7():39970. PubMed ID: 28051163
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Surface modification of bacterial cellulose aerogels' web-like skeleton for oil/water separation.
    Sai H; Fu R; Xing L; Xiang J; Li Z; Li F; Zhang T
    ACS Appl Mater Interfaces; 2015 Apr; 7(13):7373-81. PubMed ID: 25799389
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Effects of polyacrylamide on settling and separation of oil droplets in polymer flooding produced water].
    Deng S; Zhou F; Chen Z; Xia F; Yu G; Jiang Z
    Huan Jing Ke Xue; 2002 Mar; 23(2):69-72. PubMed ID: 12048822
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Research on CFD numerical simulation and flow field characteristics of countercurrent-cocurrent dissolved air flotation.
    Wang YL; Wang N; Jia R; Zhang K; Liu B; Song W; Jia J
    Water Sci Technol; 2018 Mar; 77(5-6):1280-1292. PubMed ID: 29528316
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ceramic pore channels with inducted carbon nanotubes for removing oil from water.
    Chen X; Hong L; Xu Y; Ong ZW
    ACS Appl Mater Interfaces; 2012 Apr; 4(4):1909-18. PubMed ID: 22428849
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Absorption of a mixture of volatile organic compounds (VOCs) in aqueous solutions of soluble cutting oil.
    Lalanne F; Malhautier L; Roux JC; Fanlo JL
    Bioresour Technol; 2008 Apr; 99(6):1699-707. PubMed ID: 17513105
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Numerical simulation of a combined oxidation ditch flow using 3D k-epsilon turbulence model.
    Luo L; Li WM; Deng YS; Wang T
    J Environ Sci (China); 2005; 17(5):808-12. PubMed ID: 16313008
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Encapsulation of nZVI particles using a Gum Arabic stabilized oil-in-water emulsion.
    Long T; Ramsburg CA
    J Hazard Mater; 2011 May; 189(3):801-8. PubMed ID: 21440368
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.