These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

229 related articles for article (PubMed ID: 25874906)

  • 1. Glucose-coated superparamagnetic iron oxide nanoparticles prepared by metal vapour synthesis are electively internalized in a pancreatic adenocarcinoma cell line expressing GLUT1 transporter.
    Barbaro D; Di Bari L; Gandin V; Evangelisti C; Vitulli G; Schiavi E; Marzano C; Ferretti AM; Salvadori P
    PLoS One; 2015; 10(4):e0123159. PubMed ID: 25874906
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Glucose-coated superparamagnetic iron oxide nanoparticles prepared by metal vapor synthesis can target GLUT1 overexpressing tumors: In vitro tests and in vivo preliminary assessment.
    Barbaro D; Di Bari L; Gandin V; Marzano C; Ciaramella A; Malventi M; Evangelisti C
    PLoS One; 2022; 17(6):e0269603. PubMed ID: 35704647
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The effect of mechanical properties of iron oxide nanoparticle-loaded functional nano-carrier on tumor targeting and imaging.
    Choi WI; Kim JY; Heo SU; Jeong YY; Kim YH; Tae G
    J Control Release; 2012 Sep; 162(2):267-75. PubMed ID: 22824783
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Alternating magnetic field-induced hyperthermia increases iron oxide nanoparticle cell association/uptake and flux in blood-brain barrier models.
    Dan M; Bae Y; Pittman TA; Yokel RA
    Pharm Res; 2015 May; 32(5):1615-25. PubMed ID: 25377069
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Facile Synthesis and Characterization of L-Aspartic Acid Coated Iron Oxide Magnetic Nanoparticles (IONPs) For Biomedical Applications.
    Salehiabar M; Nosrati H; Davaran S; Danafar H; Manjili HK
    Drug Res (Stuttg); 2018 May; 68(5):280-285. PubMed ID: 29036735
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Intrinsically green iron oxide nanoparticles? From synthesis via (eco-)toxicology to scenario modelling.
    Filser J; Arndt D; Baumann J; Geppert M; Hackmann S; Luther EM; Pade C; Prenzel K; Wigger H; Arning J; Hohnholt MC; Köser J; Kück A; Lesnikov E; Neumann J; Schütrumpf S; Warrelmann J; Bäumer M; Dringen R; von Gleich A; Swiderek P; Thöming J
    Nanoscale; 2013 Feb; 5(3):1034-46. PubMed ID: 23255050
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Toward absolute quantification of iron oxide nanoparticles as well as cell internalized fraction using multiparametric MRI.
    Girard OM; Ramirez R; McCarty S; Mattrey RF
    Contrast Media Mol Imaging; 2012; 7(4):411-7. PubMed ID: 22649047
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The effect of neutral-surface iron oxide nanoparticles on cellular uptake and signaling pathways.
    Kim E; Kim JM; Kim L; Choi SJ; Park IS; Han JY; Chu YC; Choi ES; Na K; Hong SS
    Int J Nanomedicine; 2016; 11():4595-4607. PubMed ID: 27695320
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Limitations and caveats of magnetic cell labeling using transfection agent complexed iron oxide nanoparticles.
    Soenen SJ; De Smedt SC; Braeckmans K
    Contrast Media Mol Imaging; 2012; 7(2):140-52. PubMed ID: 22434626
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Biodistribution and targeting properties of iron oxide nanoparticles for treatments of cancer and iron anemia disease.
    Alphandéry E
    Nanotoxicology; 2019 Jun; 13(5):573-596. PubMed ID: 30938215
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Stabilizing Alginate Confinement and Polymer Coating of CO-Releasing Molecules Supported on Iron Oxide Nanoparticles To Trigger the CO Release by Magnetic Heating.
    Meyer H; Winkler F; Kunz P; Schmidt AM; Hamacher A; Kassack MU; Janiak C
    Inorg Chem; 2015 Dec; 54(23):11236-46. PubMed ID: 26595858
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Plasma protein adsorption on Fe
    Escamilla-Rivera V; Solorio-Rodríguez A; Uribe-Ramírez M; Lozano O; Lucas S; Chagolla-López A; Winkler R; De Vizcaya-Ruiz A
    Int J Nanomedicine; 2019; 14():2055-2067. PubMed ID: 30988608
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cellular level loading and heating of superparamagnetic iron oxide nanoparticles.
    Kalambur VS; Longmire EK; Bischof JC
    Langmuir; 2007 Nov; 23(24):12329-36. PubMed ID: 17960940
    [TBL] [Abstract][Full Text] [Related]  

  • 14. MRI molecular imaging using GLUT1 antibody-Fe3O4 nanoparticles in the hemangioma animal model for differentiating infantile hemangioma from vascular malformation.
    Sohn CH; Park SP; Choi SH; Park SH; Kim S; Xu L; Kim SH; Hur JA; Choi J; Choi TH
    Nanomedicine; 2015 Jan; 11(1):127-35. PubMed ID: 25168935
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The coating makes the difference: acute effects of iron oxide nanoparticles on Daphnia magna.
    Baumann J; Köser J; Arndt D; Filser J
    Sci Total Environ; 2014 Jun; 484():176-84. PubMed ID: 24705300
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Characterization of cellular uptake and toxicity of aminosilane-coated iron oxide nanoparticles with different charges in central nervous system-relevant cell culture models.
    Sun Z; Yathindranath V; Worden M; Thliveris JA; Chu S; Parkinson FE; Hegmann T; Miller DW
    Int J Nanomedicine; 2013; 8():961-70. PubMed ID: 23494517
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fluorous-phase iron oxide nanoparticles as enhancers of acoustic droplet vaporization of perfluorocarbons with supra-physiologic boiling point.
    Vezeridis AM; de Gracia Lux C; Barnhill SA; Kim S; Wu Z; Jin S; Lux J; Gianneschi NC; Mattrey RF
    J Control Release; 2019 May; 302():54-62. PubMed ID: 30928487
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ethylene diamine-assisted synthesis of iron oxide nanoparticles in high-boiling polyolys.
    Arndt D; Zielasek V; Dreher W; Bäumer M
    J Colloid Interface Sci; 2014 Mar; 417():188-98. PubMed ID: 24407676
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Raman microscopy allows to follow internalization, subcellular accumulation and fate of iron oxide nanoparticles in cells.
    Rugiel M; Janik-Olchawa N; Kowalczyk J; Pomorska K; Sitarz M; Bik E; Horak D; Babic M; Setkowicz Z; Chwiej J
    Spectrochim Acta A Mol Biomol Spectrosc; 2024 Dec; 323():124888. PubMed ID: 39116589
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Antimicrobial activity of iron oxide nanoparticle upon modulation of nanoparticle-bacteria interface.
    Arakha M; Pal S; Samantarrai D; Panigrahi TK; Mallick BC; Pramanik K; Mallick B; Jha S
    Sci Rep; 2015 Oct; 5():14813. PubMed ID: 26437582
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.