These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 25875326)

  • 1. Selective inhibitory effects of 50-nm gold nanoparticles on mouse macrophage and spleen cells.
    Kingston M; Pfau JC; Gilmer J; Brey R
    J Immunotoxicol; 2016; 13(2):198-208. PubMed ID: 25875326
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Indirect effects of TiO2 nanoparticle on neuron-glial cell interactions.
    Hsiao IL; Chang CC; Wu CY; Hsieh YK; Chuang CY; Wang CF; Huang YJ
    Chem Biol Interact; 2016 Jul; 254():34-44. PubMed ID: 27216632
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Gold nanoparticles as a vaccine platform: influence of size and shape on immunological responses in vitro and in vivo.
    Niikura K; Matsunaga T; Suzuki T; Kobayashi S; Yamaguchi H; Orba Y; Kawaguchi A; Hasegawa H; Kajino K; Ninomiya T; Ijiro K; Sawa H
    ACS Nano; 2013 May; 7(5):3926-38. PubMed ID: 23631767
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Impact of gold nanoparticle coating on redox homeostasis.
    Tournebize J; Boudier A; Joubert O; Eidi H; Bartosz G; Maincent P; Leroy P; Sapin-Minet A
    Int J Pharm; 2012 Nov; 438(1-2):107-16. PubMed ID: 22841848
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Neuroprotective effects of cyclooxygenase-2 inhibitor celecoxib against toxicity of LPS-stimulated macrophages toward motor neurons.
    Huang Y; Liu J; Wang LZ; Zhang WY; Zhu XZ
    Acta Pharmacol Sin; 2005 Aug; 26(8):952-8. PubMed ID: 16038627
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Bacterial endotoxin (lipopolysaccharide) binds to the surface of gold nanoparticles, interferes with biocorona formation and induces human monocyte inflammatory activation.
    Li Y; Shi Z; Radauer-Preiml I; Andosch A; Casals E; Luetz-Meindl U; Cobaleda M; Lin Z; Jaberi-Douraki M; Italiani P; Horejs-Hoeck J; Himly M; Monteiro-Riviere NA; Duschl A; Puntes VF; Boraschi D
    Nanotoxicology; 2017; 11(9-10):1157-1175. PubMed ID: 29192556
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Systemic and immunotoxicity of silver nanoparticles in an intravenous 28 days repeated dose toxicity study in rats.
    De Jong WH; Van Der Ven LT; Sleijffers A; Park MV; Jansen EH; Van Loveren H; Vandebriel RJ
    Biomaterials; 2013 Nov; 34(33):8333-43. PubMed ID: 23886731
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Monitoring lipopolysaccharide-induced macrophage polarization by surface-enhanced Raman scattering.
    Yılmaz D; Culha M
    Mikrochim Acta; 2024 Aug; 191(9):548. PubMed ID: 39162887
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Deletion of Rac1GTPase in the Myeloid Lineage Protects against Inflammation-Mediated Kidney Injury in Mice.
    Nagase M; Kurihara H; Aiba A; Young MJ; Sakai T
    PLoS One; 2016; 11(3):e0150886. PubMed ID: 26939003
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Enhancement of lipopolysaccharide-induced nitric oxide and interleukin-6 production by PEGylated gold nanoparticles in RAW264.7 cells.
    Liu Z; Li W; Wang F; Sun C; Wang L; Wang J; Sun F
    Nanoscale; 2012 Nov; 4(22):7135-42. PubMed ID: 23070238
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Modulation of lipopolysaccharide-induced proinflammatory cytokine production by satratoxins and other macrocyclic trichothecenes in the murine macrophage.
    Chung YJ; Jarvis B; Pestka J
    J Toxicol Environ Health A; 2003 Feb; 66(4):379-91. PubMed ID: 12554543
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cytotoxic effects of gold nanoparticles: a multiparametric study.
    Soenen SJ; Manshian B; Montenegro JM; Amin F; Meermann B; Thiron T; Cornelissen M; Vanhaecke F; Doak S; Parak WJ; De Smedt S; Braeckmans K
    ACS Nano; 2012 Jul; 6(7):5767-83. PubMed ID: 22659047
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The effects of a mineral trioxide aggregate-based sealer on the production of reactive oxygen species, nitrogen species and cytokines by two macrophage subtypes.
    Braga JM; Oliveira RR; Martins RC; Ribeiro Sobrinho AP
    Int Endod J; 2014 Oct; 47(10):909-19. PubMed ID: 24354338
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Modulatory effect of fatty acids on fungicidal activity, respiratory burst and TNF-α and IL-6 production in J774 murine macrophages.
    Martins de Lima-Salgado T; Coccuzzo Sampaio S; Cury-Boaventura MF; Curi R
    Br J Nutr; 2011 Apr; 105(8):1173-9. PubMed ID: 21232170
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Inflammatory responses of RAW 264.7 macrophages upon exposure to nanoparticles: role of ROS-NFκB signaling pathway.
    Nishanth RP; Jyotsna RG; Schlager JJ; Hussain SM; Reddanna P
    Nanotoxicology; 2011 Dec; 5(4):502-16. PubMed ID: 21417802
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Immunotoxicity assessment of CdSe/ZnS quantum dots in macrophages, lymphocytes and BALB/c mice.
    Wang X; Tian J; Yong KT; Zhu X; Lin MC; Jiang W; Li J; Huang Q; Lin G
    J Nanobiotechnology; 2016 Feb; 14():10. PubMed ID: 26846666
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Glycyrrhiza glabra L. Extract Inhibits LPS-Induced Inflammation in RAW Macrophages.
    Li C; Eom T; Jeong Y
    J Nutr Sci Vitaminol (Tokyo); 2015; 61(5):375-81. PubMed ID: 26639845
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Dental monomers inhibit LPS-induced cytokine release from the macrophage cell line RAW264.7.
    Bølling AK; Samuelsen JT; Morisbak E; Ansteinsson V; Becher R; Dahl JE; Mathisen GH
    Toxicol Lett; 2013 Feb; 216(2-3):130-8. PubMed ID: 23182953
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cytokines release and oxidative status in semen samples from rabbits treated with bacterial lipopolysaccharide.
    Collodel G; Moretti E; Brecchia G; Kuželová L; Arruda J; Mourvaki E; Castellini C
    Theriogenology; 2015 Apr; 83(7):1233-40. PubMed ID: 25662201
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Sublethal hemorrhagic shock reduces tumor necrosis factor-alpha-producing capacity in different cell compartments.
    Flohé S; Ackermann M; Reuter M; Nast-Kolb D; Schade FU
    Eur Cytokine Netw; 2000 Sep; 11(3):420-6. PubMed ID: 11022127
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.