BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

230 related articles for article (PubMed ID: 25875512)

  • 1. A single nucleotide polymorphism uncovers a novel function for the transcription factor Ace2 during Candida albicans hyphal development.
    Calderón-Noreña DM; González-Novo A; Orellana-Muñoz S; Gutiérrez-Escribano P; Arnáiz-Pita Y; Dueñas-Santero E; Suárez MB; Bougnoux ME; Del Rey F; Sherlock G; d'Enfert C; Correa-Bordes J; de Aldana CR
    PLoS Genet; 2015 Apr; 11(4):e1005152. PubMed ID: 25875512
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Sep7 is essential to modify septin ring dynamics and inhibit cell separation during Candida albicans hyphal growth.
    González-Novo A; Correa-Bordes J; Labrador L; Sánchez M; Vázquez de Aldana CR; Jiménez J
    Mol Biol Cell; 2008 Apr; 19(4):1509-18. PubMed ID: 18234840
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The Ndr/LATS Kinase Cbk1 Regulates a Specific Subset of Ace2 Functions and Suppresses the Hypha-to-Yeast Transition in Candida albicans.
    Wakade RS; Ristow LC; Stamnes MA; Kumar A; Krysan DJ
    mBio; 2020 Aug; 11(4):. PubMed ID: 32817109
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Rsr1 Palmitoylation and GTPase Activity Status Differentially Coordinate Nuclear, Septin, and Vacuole Dynamics in Candida albicans.
    Bedekovic T; Agnew E; Brand AC
    mBio; 2020 Oct; 11(5):. PubMed ID: 33051364
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Candida albicans Int1p interacts with the septin ring in yeast and hyphal cells.
    Gale C; Gerami-Nejad M; McClellan M; Vandoninck S; Longtine MS; Berman J
    Mol Biol Cell; 2001 Nov; 12(11):3538-49. PubMed ID: 11694587
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The NDR Kinase Cbk1 Downregulates the Transcriptional Repressor Nrg1 through the mRNA-Binding Protein Ssd1 in Candida albicans.
    Lee HJ; Kim JM; Kang WK; Yang H; Kim JY
    Eukaryot Cell; 2015 Jul; 14(7):671-83. PubMed ID: 26002720
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Linking Sfl1 Regulation of Hyphal Development to Stress Response Kinases in Candida albicans.
    Unoje O; Yang M; Lu Y; Su C; Liu H
    mSphere; 2020 Jan; 5(1):. PubMed ID: 31941808
    [No Abstract]   [Full Text] [Related]  

  • 8. Depletion of the mitotic kinase Cdc5p in Candida albicans results in the formation of elongated buds that switch to the hyphal fate over time in a Ume6p and Hgc1p-dependent manner.
    Glory A; van Oostende CT; Geitmann A; Bachewich C
    Fungal Genet Biol; 2017 Oct; 107():51-66. PubMed ID: 28803909
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The Cbk1-Ace2 axis guides Candida albicans from yeast to hyphae and back again.
    Wakade RS; Krysan DJ
    Curr Genet; 2021 Jun; 67(3):461-469. PubMed ID: 33433733
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Hyphal chain formation in Candida albicans: Cdc28-Hgc1 phosphorylation of Efg1 represses cell separation genes.
    Wang A; Raniga PP; Lane S; Lu Y; Liu H
    Mol Cell Biol; 2009 Aug; 29(16):4406-16. PubMed ID: 19528234
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Phosphoregulation of Nap1 plays a role in septin ring dynamics and morphogenesis in Candida albicans.
    Huang ZX; Zhao P; Zeng GS; Wang YM; Sudbery I; Wang Y
    mBio; 2014 Feb; 5(1):e00915-13. PubMed ID: 24496790
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Tpd3-Pph21 phosphatase plays a direct role in Sep7 dephosphorylation in Candida albicans.
    Liu Q; Han Q; Wang N; Yao G; Zeng G; Wang Y; Huang Z; Sang J; Wang Y
    Mol Microbiol; 2016 Jul; 101(1):109-21. PubMed ID: 26991697
    [TBL] [Abstract][Full Text] [Related]  

  • 13. CDK-dependent phosphorylation of Mob2 is essential for hyphal development in Candida albicans.
    Gutiérrez-Escribano P; González-Novo A; Suárez MB; Li CR; Wang Y; de Aldana CR; Correa-Bordes J
    Mol Biol Cell; 2011 Jul; 22(14):2458-69. PubMed ID: 21593210
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A forkhead transcription factor is important for true hyphal as well as yeast morphogenesis in Candida albicans.
    Bensen ES; Filler SG; Berman J
    Eukaryot Cell; 2002 Oct; 1(5):787-98. PubMed ID: 12455696
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Candida albicans hyphal initiation and elongation.
    Lu Y; Su C; Liu H
    Trends Microbiol; 2014 Dec; 22(12):707-14. PubMed ID: 25262420
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A GATA transcription factor recruits Hda1 in response to reduced Tor1 signaling to establish a hyphal chromatin state in Candida albicans.
    Lu Y; Su C; Liu H
    PLoS Pathog; 2012; 8(4):e1002663. PubMed ID: 22536157
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The mating projections of Saccharomyces cerevisiae and Candida albicans show key characteristics of hyphal growth.
    Chapa-Y-Lazo B; Lee S; Regan H; Sudbery P
    Fungal Biol; 2011 Jun; 115(6):547-56. PubMed ID: 21640318
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mutational analysis of essential septins reveals a role for septin-mediated signaling in filamentation.
    Blankenship JR; Cheng S; Woolford CA; Xu W; Johnson TM; Rogers PD; Fanning S; Nguyen MH; Clancy CJ; Mitchell AP
    Eukaryot Cell; 2014 Nov; 13(11):1403-10. PubMed ID: 25217462
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Septin function in Candida albicans morphogenesis.
    Warenda AJ; Konopka JB
    Mol Biol Cell; 2002 Aug; 13(8):2732-46. PubMed ID: 12181342
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Candida albicans requires iron to sustain hyphal growth.
    Luo G; Wang T; Zhang J; Zhang P; Lu Y
    Biochem Biophys Res Commun; 2021 Jul; 561():106-112. PubMed ID: 34022710
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.