These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

120 related articles for article (PubMed ID: 25875730)

  • 1. Biochemical and Mutational Characterization of N-Succinyl-Amino Acid Racemase from Geobacillus stearothermophilus CECT49.
    Soriano-Maldonado P; Andújar-Sánchez M; Clemente-Jiménez JM; Rodríguez-Vico F; Las Heras-Vázquez FJ; Martínez-Rodríguez S
    Mol Biotechnol; 2015 May; 57(5):454-65. PubMed ID: 25875730
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Enzymatic dynamic kinetic resolution of racemic N-formyl- and N-carbamoyl-amino acids using immobilized L-N-carbamoylase and N-succinyl-amino acid racemase.
    Soriano-Maldonado P; Las Heras-Vazquez FJ; Clemente-Jimenez JM; Rodriguez-Vico F; Martínez-Rodríguez S
    Appl Microbiol Biotechnol; 2015 Jan; 99(1):283-91. PubMed ID: 24993356
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Thermostable alanine racemase from Bacillus stearothermophilus: molecular cloning of the gene, enzyme purification, and characterization.
    Inagaki K; Tanizawa K; Badet B; Walsh CT; Tanaka H; Soda K
    Biochemistry; 1986 Jun; 25(11):3268-74. PubMed ID: 3015202
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Characterization of d-succinylase from Cupriavidus sp. P4-10-C and its application in d-amino acid synthesis.
    Sumida Y; Iwai S; Nishiya Y; Kumagai S; Yamada T; Azuma M
    J Biosci Bioeng; 2018 Mar; 125(3):282-286. PubMed ID: 29153699
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The first identification and characterization of a histidine-specific amino acid racemase, histidine racemase from a lactic acid bacterium, Leuconostoc mesenteroides subsp. sake NBRC 102480.
    Adachi M; Shimizu R; Kato S; Oikawa T
    Amino Acids; 2019 Feb; 51(2):331-343. PubMed ID: 30377839
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Lysine racemase from a lactic acid bacterium, Oenococcus oeni: structural basis of substrate specificity.
    Kato S; Hemmi H; Yoshimura T
    J Biochem; 2012 Dec; 152(6):505-8. PubMed ID: 23035128
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Thermostable alanine racemase from Bacillus stearothermophilus: DNA and protein sequence determination and secondary structure prediction.
    Tanizawa K; Ohshima A; Scheidegger A; Inagaki K; Tanaka H; Soda K
    Biochemistry; 1988 Feb; 27(4):1311-6. PubMed ID: 2835089
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Thermostable alanine racemase. Its structural stability.
    Soda K; Tanizawa K
    Ann N Y Acad Sci; 1990; 585():386-93. PubMed ID: 2192620
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Evolution of enzymatic activities in the enolase superfamily: N-succinylamino acid racemase and a new pathway for the irreversible conversion of D- to L-amino acids.
    Sakai A; Xiang DF; Xu C; Song L; Yew WS; Raushel FM; Gerlt JA
    Biochemistry; 2006 Apr; 45(14):4455-62. PubMed ID: 16584181
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Purification and characterization of cloned alkaline protease gene of Geobacillus stearothermophilus.
    Iqbal I; Aftab MN; Afzal M; Ur-Rehman A; Aftab S; Zafar A; Ud-Din Z; Khuharo AR; Iqbal J; Ul-Haq I
    J Basic Microbiol; 2015 Feb; 55(2):160-71. PubMed ID: 25224381
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Structural basis for catalytic racemization and substrate specificity of an N-acylamino acid racemase homologue from Deinococcus radiodurans.
    Wang WC; Chiu WC; Hsu SK; Wu CL; Chen CY; Liu JS; Hsu WH
    J Mol Biol; 2004 Sep; 342(1):155-69. PubMed ID: 15313614
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Structure and conformational stability of a tetrameric thermostable N-succinylamino acid racemase.
    Pozo-Dengra J; Martínez-Rodríguez S; Contreras LM; Prieto J; Andújar-Sánchez M; Clemente-Jiménez JM; Las Heras-Vázquez FJ; Rodríguez-Vico F; Neira JL
    Biopolymers; 2009 Sep; 91(9):757-72. PubMed ID: 19517534
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cloning and characterization of the HPr kinase/phosphorylase gene from Bacillus stearothermophilus No. 236.
    Choi ID; Kim KN; Yun CW; Choi YJ
    Biosci Biotechnol Biochem; 2006 May; 70(5):1089-101. PubMed ID: 16717408
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Evaluation of substrate promiscuity of an L-carbamoyl amino acid amidohydrolase from Geobacillus stearothermophilus CECT43.
    Pozo-Dengra J; Martínez-Gómez AI; Martínez-Rodríguez S; Clemente-Jiménez JM; Rodríguez-Vico F; Las Heras-Vázquez FJ
    Biotechnol Prog; 2010; 26(4):954-9. PubMed ID: 20730754
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Structure-function relationships in Gan42B, an intracellular GH42 β-galactosidase from Geobacillus stearothermophilus.
    Solomon HV; Tabachnikov O; Lansky S; Salama R; Feinberg H; Shoham Y; Shoham G
    Acta Crystallogr D Biol Crystallogr; 2015 Dec; 71(Pt 12):2433-48. PubMed ID: 26627651
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Structure-specificity relationships in Abp, a GH27 β-L-arabinopyranosidase from Geobacillus stearothermophilus T6.
    Lansky S; Salama R; Solomon HV; Feinberg H; Belrhali H; Shoham Y; Shoham G
    Acta Crystallogr D Biol Crystallogr; 2014 Nov; 70(Pt 11):2994-3012. PubMed ID: 25372689
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Evolution of enzymatic activity in the enolase superfamily: functional studies of the promiscuous o-succinylbenzoate synthase from Amycolatopsis.
    Taylor Ringia EA; Garrett JB; Thoden JB; Holden HM; Rayment I; Gerlt JA
    Biochemistry; 2004 Jan; 43(1):224-9. PubMed ID: 14705949
    [TBL] [Abstract][Full Text] [Related]  

  • 18. N-succinylamino acid racemases: Enzymatic properties and biotechnological applications.
    Martínez-Rodríguez S; Soriano-Maldonado P; Gavira JA
    Biochim Biophys Acta Proteins Proteom; 2020 Apr; 1868(4):140377. PubMed ID: 31982578
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Probing the essential catalytic residues and substrate affinity in the thermoactive Bacillus stearothermophilus US100 L-arabinose isomerase by site-directed mutagenesis.
    Rhimi M; Juy M; Aghajari N; Haser R; Bejar S
    J Bacteriol; 2007 May; 189(9):3556-63. PubMed ID: 17337581
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Distinct metal dependence for catalytic and structural functions in the L-arabinose isomerases from the mesophilic Bacillus halodurans and the thermophilic Geobacillus stearothermophilus.
    Lee DW; Choe EA; Kim SB; Eom SH; Hong YH; Lee SJ; Lee HS; Lee DY; Pyun YR
    Arch Biochem Biophys; 2005 Feb; 434(2):333-43. PubMed ID: 15639234
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.