These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

122 related articles for article (PubMed ID: 25875741)

  • 1. Genes of Bacillus subtilis 168 that Support Growth of the Cyanobacterium, Synechococcus leopoliensis CCAP1405/1 on Agar Media.
    Hayashi S; Itoh K; Suyama K
    Microb Ecol; 2015 Oct; 70(3):849-52. PubMed ID: 25875741
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Growth of the cyanobacterium Synechococcus leopoliensis CCAP1405/1 on agar media in the presence of heterotrophic bacteria.
    Hayashi S; Itoh K; Suyama K
    Microbes Environ; 2011; 26(2):120-7. PubMed ID: 21502741
    [TBL] [Abstract][Full Text] [Related]  

  • 3. ParA-like protein influences the distribution of multi-copy chromosomes in cyanobacterium Synechococcus elongatus PCC 7942.
    Watanabe S; Noda A; Ohbayashi R; Uchioke K; Kurihara A; Nakatake S; Morioka S; Kanesaki Y; Chibazakura T; Yoshikawa H
    Microbiology (Reading); 2018 Jan; 164(1):45-56. PubMed ID: 29165230
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Systematic Characterization of the Metabolism of Acetoin and Its Derivative Ligustrazine in Bacillus subtilis under Micro-Oxygen Conditions.
    Xu Y; Jiang Y; Li X; Sun B; Teng C; Yang R; Xiong K; Fan G; Wang W
    J Agric Food Chem; 2018 Mar; 66(12):3179-3187. PubMed ID: 29512378
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Engineering of Synechococcus sp. strain PCC 7002 for the photoautotrophic production of light-sensitive riboflavin (vitamin B2).
    Kachel B; Mack M
    Metab Eng; 2020 Nov; 62():275-286. PubMed ID: 32992032
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Constitutive expression of small heat shock protein in an htpG disruptant of the Cyanobacterium Synechococcus sp. PCC 7942.
    Kojima K; Nakamoto H
    Curr Microbiol; 2005 May; 50(5):272-6. PubMed ID: 15886908
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Alkane production by the marine cyanobacterium Synechococcus sp. NKBG15041c possessing the α-olefin biosynthesis pathway.
    Yoshino T; Liang Y; Arai D; Maeda Y; Honda T; Muto M; Kakunaka N; Tanaka T
    Appl Microbiol Biotechnol; 2015 Feb; 99(3):1521-9. PubMed ID: 25527377
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Comparative genomics reveals the molecular determinants of rapid growth of the cyanobacterium
    Ungerer J; Wendt KE; Hendry JI; Maranas CD; Pakrasi HB
    Proc Natl Acad Sci U S A; 2018 Dec; 115(50):E11761-E11770. PubMed ID: 30409802
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Halotolerant cyanobacterium Aphanothece halophytica contains a betaine transporter active at alkaline pH and high salinity.
    Laloknam S; Tanaka K; Buaboocha T; Waditee R; Incharoensakdi A; Hibino T; Tanaka Y; Takabe T
    Appl Environ Microbiol; 2006 Sep; 72(9):6018-26. PubMed ID: 16957224
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Biochemical and molecular characterization of the Bacillus subtilis acetoin catabolic pathway.
    Huang M; Oppermann-Sanio FB; Steinbüchel A
    J Bacteriol; 1999 Jun; 181(12):3837-41. PubMed ID: 10368162
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Genetic and genomic analysis of RNases in model cyanobacteria.
    Cameron JC; Gordon GC; Pfleger BF
    Photosynth Res; 2015 Oct; 126(1):171-83. PubMed ID: 25595545
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The tricarboxylic acid cycle in cyanobacteria.
    Zhang S; Bryant DA
    Science; 2011 Dec; 334(6062):1551-3. PubMed ID: 22174252
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Biofilm fermentation of iturin A by a recombinant strain of Bacillus subtilis 168.
    Rahman MS; Ano T; Shoda M
    J Biotechnol; 2007 Jan; 127(3):503-7. PubMed ID: 16942812
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Factors affecting antimicrobial activity of Synechococcus leopoliensis.
    Noaman NH; Fattah A; Khaleafa M; Zaky SH
    Microbiol Res; 2004; 159(4):395-402. PubMed ID: 15646385
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Intensive DNA Replication and Metabolism during the Lag Phase in Cyanobacteria.
    Watanabe S; Ohbayashi R; Kanesaki Y; Saito N; Chibazakura T; Soga T; Yoshikawa H
    PLoS One; 2015; 10(9):e0136800. PubMed ID: 26331851
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Bacillus subtilis undergoes natural genetic transformation on agar plates].
    Chen X; Chen Q; Xie Z; Shen P
    Wei Sheng Wu Xue Bao; 2000 Feb; 40(1):95-9. PubMed ID: 12548886
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cytochrome c550 is related to initiation of sporulation in Bacillus subtilis.
    Shin I; Ryu HB; Yim HS; Kang SO
    J Microbiol; 2005 Jun; 43(3):244-50. PubMed ID: 15995641
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Metabolic engineering of Bacillus subtilis for enhanced production of acetoin.
    Wang M; Fu J; Zhang X; Chen T
    Biotechnol Lett; 2012 Oct; 34(10):1877-85. PubMed ID: 22714279
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The Bacillus subtilis ydjL (bdhA) gene encodes acetoin reductase/2,3-butanediol dehydrogenase.
    Nicholson WL
    Appl Environ Microbiol; 2008 Nov; 74(22):6832-8. PubMed ID: 18820069
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Increased dipicolinic acid production with an enhanced spoVF operon in Bacillus subtilis and medium optimization.
    Takahashi F; Sumitomo N; Hagihara H; Ozaki K
    Biosci Biotechnol Biochem; 2015; 79(3):505-11. PubMed ID: 25402593
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.